ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.00007
  4. Cited By
Robustly Disentangled Causal Mechanisms: Validating Deep Representations
  for Interventional Robustness

Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness

31 October 2018
Raphael Suter
Ðorðe Miladinovic
Bernhard Schölkopf
Stefan Bauer
    CML
    OOD
    DRL
ArXivPDFHTML

Papers citing "Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness"

47 / 47 papers shown
Title
Parameter Estimation using Reinforcement Learning Causal Curiosity: Limits and Challenges
Parameter Estimation using Reinforcement Learning Causal Curiosity: Limits and Challenges
Miguel Arana-Catania
Weisi Guo
CML
30
0
0
13 May 2025
If Concept Bottlenecks are the Question, are Foundation Models the Answer?
If Concept Bottlenecks are the Question, are Foundation Models the Answer?
Nicola Debole
Pietro Barbiero
Francesco Giannini
Andrea Passerini
Stefano Teso
Emanuele Marconato
173
0
0
28 Apr 2025
Modular Machine Learning: An Indispensable Path towards New-Generation Large Language Models
Modular Machine Learning: An Indispensable Path towards New-Generation Large Language Models
X. Wang
Haoyang Li
Zeyang Zhang
Hongyu Chen
Wenwu Zhu
LRM
84
0
0
28 Apr 2025
Towards Robust and Reliable Concept Representations: Reliability-Enhanced Concept Embedding Model
Towards Robust and Reliable Concept Representations: Reliability-Enhanced Concept Embedding Model
Yuxuan Cai
Xiang Wang
Satoshi Tsutsui
Winnie Pang
Bihan Wen
65
0
0
03 Feb 2025
Learning Invariant Causal Mechanism from Vision-Language Models
Learning Invariant Causal Mechanism from Vision-Language Models
Zeen Song
Siyu Zhao
Xingyu Zhang
Jiangmeng Li
Changwen Zheng
Wenwen Qiang
CML
BDL
VLM
45
0
0
24 May 2024
Measuring the Effect of Causal Disentanglement on the Adversarial
  Robustness of Neural Network Models
Measuring the Effect of Causal Disentanglement on the Adversarial Robustness of Neural Network Models
Preben Ness
D. Marijan
Sunanda Bose
CML
29
0
0
21 Aug 2023
Conditionally Invariant Representation Learning for Disentangling
  Cellular Heterogeneity
Conditionally Invariant Representation Learning for Disentangling Cellular Heterogeneity
H. Aliee
Ferdinand Kapl
Soroor Hediyeh-zadeh
Fabian J. Theis
CML
26
6
0
02 Jul 2023
On Counterfactual Data Augmentation Under Confounding
On Counterfactual Data Augmentation Under Confounding
Abbavaram Gowtham Reddy
Saketh Bachu
Saloni Dash
Charchit Sharma
Amit Sharma
V. Balasubramanian
CML
BDL
33
0
0
29 May 2023
Text-Video Retrieval with Disentangled Conceptualization and Set-to-Set
  Alignment
Text-Video Retrieval with Disentangled Conceptualization and Set-to-Set Alignment
Peng Jin
Hao Li
Ze-Long Cheng
Jinfa Huang
Zhennan Wang
Li-ming Yuan
Chang-rui Liu
Jie Chen
38
32
0
20 May 2023
A Category-theoretical Meta-analysis of Definitions of Disentanglement
A Category-theoretical Meta-analysis of Definitions of Disentanglement
Yivan Zhang
Masashi Sugiyama
38
3
0
11 May 2023
Correcting Flaws in Common Disentanglement Metrics
Correcting Flaws in Common Disentanglement Metrics
Louis Mahon
Lei Shah
Thomas Lukasiewicz
CoGe
DRL
37
3
0
05 Apr 2023
Generative Causal Representation Learning for Out-of-Distribution Motion
  Forecasting
Generative Causal Representation Learning for Out-of-Distribution Motion Forecasting
Shayan Shirahmad Gale Bagi
Zahra Gharaee
Oliver Schulte
Mark Crowley
OODD
OOD
32
12
0
17 Feb 2023
Disentangled Representation Learning
Disentangled Representation Learning
Xin Wang
Hong Chen
Siao Tang
Zihao Wu
Wenwu Zhu
DRL
37
78
0
21 Nov 2022
Deep Causal Learning: Representation, Discovery and Inference
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
36
11
0
07 Nov 2022
DOT-VAE: Disentangling One Factor at a Time
DOT-VAE: Disentangling One Factor at a Time
Vaishnavi Patil
Matthew Evanusa
J. JáJá
CoGe
DRL
CML
23
1
0
19 Oct 2022
SW-VAE: Weakly Supervised Learn Disentangled Representation Via Latent
  Factor Swapping
SW-VAE: Weakly Supervised Learn Disentangled Representation Via Latent Factor Swapping
Jiageng Zhu
Hanchen Xie
Wael AbdAlmageed
SSL
CoGe
DRL
35
4
0
21 Sep 2022
Weakly Supervised Invariant Representation Learning Via Disentangling
  Known and Unknown Nuisance Factors
Weakly Supervised Invariant Representation Learning Via Disentangling Known and Unknown Nuisance Factors
Jiageng Zhu
Hanchen Xie
Wael AbdAlmageed
32
1
0
15 Sep 2022
Equivariant Disentangled Transformation for Domain Generalization under
  Combination Shift
Equivariant Disentangled Transformation for Domain Generalization under Combination Shift
Yivan Zhang
Jindong Wang
Xingxu Xie
Masashi Sugiyama
OOD
42
1
0
03 Aug 2022
GlanceNets: Interpretabile, Leak-proof Concept-based Models
GlanceNets: Interpretabile, Leak-proof Concept-based Models
Emanuele Marconato
Andrea Passerini
Stefano Teso
106
64
0
31 May 2022
From Statistical to Causal Learning
From Statistical to Causal Learning
Bernhard Schölkopf
Julius von Kügelgen
CML
32
45
0
01 Apr 2022
Deconfounding to Explanation Evaluation in Graph Neural Networks
Deconfounding to Explanation Evaluation in Graph Neural Networks
Yingmin Wu
Xiang Wang
An Zhang
Xia Hu
Fuli Feng
Xiangnan He
Tat-Seng Chua
FAtt
CML
17
14
0
21 Jan 2022
Disentanglement and Generalization Under Correlation Shifts
Disentanglement and Generalization Under Correlation Shifts
Christina M. Funke
Paul Vicol
Kuan-Chieh Jackson Wang
Matthias Kümmerer
R. Zemel
Matthias Bethge
OOD
39
7
0
29 Dec 2021
Latte: Cross-framework Python Package for Evaluation of Latent-Based
  Generative Models
Latte: Cross-framework Python Package for Evaluation of Latent-Based Generative Models
Alon Jacovi
Junyoung Lee
Alexander Lerch
DRL
18
1
0
20 Dec 2021
On Causally Disentangled Representations
On Causally Disentangled Representations
Abbavaram Gowtham Reddy
Benin Godfrey L
V. Balasubramanian
OOD
CML
34
21
0
10 Dec 2021
Towards Robust and Adaptive Motion Forecasting: A Causal Representation
  Perspective
Towards Robust and Adaptive Motion Forecasting: A Causal Representation Perspective
Yuejiang Liu
Riccardo Cadei
Jonas Schweizer
Sherwin Bahmani
Alexandre Alahi
OOD
TTA
38
51
0
29 Nov 2021
Matching Learned Causal Effects of Neural Networks with Domain Priors
Matching Learned Causal Effects of Neural Networks with Domain Priors
Sai Srinivas Kancheti
Abbavaram Gowtham Reddy
V. Balasubramanian
Amit Sharma
CML
36
12
0
24 Nov 2021
Self-Supervised Learning Disentangled Group Representation as Feature
Self-Supervised Learning Disentangled Group Representation as Feature
Tan Wang
Zhongqi Yue
Jianqiang Huang
Qianru Sun
Hanwang Zhang
OOD
36
67
0
28 Oct 2021
Towards Principled Causal Effect Estimation by Deep Identifiable Models
Towards Principled Causal Effect Estimation by Deep Identifiable Models
Pengzhou (Abel) Wu
Kenji Fukumizu
BDL
OOD
CML
30
3
0
30 Sep 2021
Desiderata for Representation Learning: A Causal Perspective
Desiderata for Representation Learning: A Causal Perspective
Yixin Wang
Michael I. Jordan
CML
32
80
0
08 Sep 2021
What can the millions of random treatments in nonexperimental data
  reveal about causes?
What can the millions of random treatments in nonexperimental data reveal about causes?
Andre F. Ribeiro
Frank Neffke
Ricardo Hausmann
CML
28
1
0
03 May 2021
Causal Attention for Vision-Language Tasks
Causal Attention for Vision-Language Tasks
Xu Yang
Hanwang Zhang
Guojun Qi
Jianfei Cai
CML
28
148
0
05 Mar 2021
Counterfactual Zero-Shot and Open-Set Visual Recognition
Counterfactual Zero-Shot and Open-Set Visual Recognition
Zhongqi Yue
Tan Wang
Hanwang Zhang
Qianru Sun
Xiansheng Hua
BDL
158
193
0
01 Mar 2021
Towards Building A Group-based Unsupervised Representation
  Disentanglement Framework
Towards Building A Group-based Unsupervised Representation Disentanglement Framework
Tao Yang
Xuanchi Ren
Yuwang Wang
W. Zeng
Nanning Zheng
CoGe
DRL
19
27
0
20 Feb 2021
Counterfactual Generative Networks
Counterfactual Generative Networks
Axel Sauer
Andreas Geiger
OOD
BDL
CML
41
123
0
15 Jan 2021
Measuring Disentanglement: A Review of Metrics
Measuring Disentanglement: A Review of Metrics
M. Carbonneau
Julian Zaïdi
Jonathan Boilard
G. Gagnon
CoGe
DRL
28
81
0
16 Dec 2020
Latent Causal Invariant Model
Latent Causal Invariant Model
Xinwei Sun
Botong Wu
Xiangyu Zheng
Chang-Shu Liu
Wei Chen
Tao Qin
Tie-Yan Liu
OOD
CML
BDL
29
14
0
04 Nov 2020
On the Transfer of Disentangled Representations in Realistic Settings
On the Transfer of Disentangled Representations in Realistic Settings
Andrea Dittadi
Frederik Trauble
Francesco Locatello
M. Wuthrich
Vaibhav Agrawal
Ole Winther
Stefan Bauer
Bernhard Schölkopf
OOD
35
39
0
27 Oct 2020
Interventional Few-Shot Learning
Interventional Few-Shot Learning
Zhongqi Yue
Hanwang Zhang
Qianru Sun
Xiansheng Hua
26
225
0
28 Sep 2020
Causal Intervention for Weakly-Supervised Semantic Segmentation
Causal Intervention for Weakly-Supervised Semantic Segmentation
Dong Zhang
Hanwang Zhang
Jinhui Tang
Xiansheng Hua
Qianru Sun
CML
ISeg
43
444
0
26 Sep 2020
Learning Disentangled Representations with Latent Variation
  Predictability
Learning Disentangled Representations with Latent Variation Predictability
Xinqi Zhu
Chang Xu
Dacheng Tao
CoGe
DRL
22
26
0
25 Jul 2020
A causal view of compositional zero-shot recognition
A causal view of compositional zero-shot recognition
Y. Atzmon
Felix Kreuk
Uri Shalit
Gal Chechik
OCL
BDL
CML
61
117
0
25 Jun 2020
Generative causal explanations of black-box classifiers
Generative causal explanations of black-box classifiers
Matthew R. O’Shaughnessy
Gregory H. Canal
Marissa Connor
Mark A. Davenport
Christopher Rozell
CML
30
73
0
24 Jun 2020
Emergent Multi-Agent Communication in the Deep Learning Era
Emergent Multi-Agent Communication in the Deep Learning Era
Angeliki Lazaridou
Marco Baroni
AI4CE
48
197
0
03 Jun 2020
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
Girish A. Koushik
Furui Liu
Zhitang Chen
Xinwei Shen
Jianye Hao
Jun Wang
OOD
CoGe
CML
41
44
0
18 Apr 2020
NestedVAE: Isolating Common Factors via Weak Supervision
NestedVAE: Isolating Common Factors via Weak Supervision
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
DRL
26
21
0
26 Feb 2020
Causality-based Feature Selection: Methods and Evaluations
Causality-based Feature Selection: Methods and Evaluations
Kui Yu
Xianjie Guo
Lin Liu
Jiuyong Li
Hao Wang
Zhaolong Ling
Xindong Wu
CML
24
92
0
17 Nov 2019
Counterfactuals uncover the modular structure of deep generative models
Counterfactuals uncover the modular structure of deep generative models
M. Besserve
Arash Mehrjou
Rémy Sun
Bernhard Schölkopf
DRL
BDL
DiffM
19
107
0
08 Dec 2018
1