Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.00007
Cited By
Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness
31 October 2018
Raphael Suter
Ðorðe Miladinovic
Bernhard Schölkopf
Stefan Bauer
CML
OOD
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness"
47 / 47 papers shown
Title
Parameter Estimation using Reinforcement Learning Causal Curiosity: Limits and Challenges
Miguel Arana-Catania
Weisi Guo
CML
30
0
0
13 May 2025
If Concept Bottlenecks are the Question, are Foundation Models the Answer?
Nicola Debole
Pietro Barbiero
Francesco Giannini
Andrea Passerini
Stefano Teso
Emanuele Marconato
158
0
0
28 Apr 2025
Modular Machine Learning: An Indispensable Path towards New-Generation Large Language Models
X. Wang
Haoyang Li
Zeyang Zhang
Hongyu Chen
Wenwu Zhu
LRM
84
0
0
28 Apr 2025
Towards Robust and Reliable Concept Representations: Reliability-Enhanced Concept Embedding Model
Yuxuan Cai
Xinbing Wang
Satoshi Tsutsui
Winnie Pang
Bihan Wen
65
0
0
03 Feb 2025
Learning Invariant Causal Mechanism from Vision-Language Models
Changwen Zheng
Siyu Zhao
Xingyu Zhang
Jiangmeng Li
Changwen Zheng
Jingyao Wang
CML
BDL
VLM
45
0
0
24 May 2024
Measuring the Effect of Causal Disentanglement on the Adversarial Robustness of Neural Network Models
Preben Ness
D. Marijan
Sunanda Bose
CML
29
0
0
21 Aug 2023
Conditionally Invariant Representation Learning for Disentangling Cellular Heterogeneity
H. Aliee
Ferdinand Kapl
Soroor Hediyeh-zadeh
Fabian J. Theis
CML
23
6
0
02 Jul 2023
On Counterfactual Data Augmentation Under Confounding
Abbavaram Gowtham Reddy
Saketh Bachu
Saloni Dash
Charchit Sharma
Amit Sharma
V. Balasubramanian
CML
BDL
33
0
0
29 May 2023
Text-Video Retrieval with Disentangled Conceptualization and Set-to-Set Alignment
Peng Jin
Hao Li
Ze-Long Cheng
Jinfa Huang
Zhennan Wang
Li-ming Yuan
Chang-rui Liu
Jie Chen
38
32
0
20 May 2023
A Category-theoretical Meta-analysis of Definitions of Disentanglement
Yivan Zhang
Masashi Sugiyama
38
3
0
11 May 2023
Correcting Flaws in Common Disentanglement Metrics
Louis Mahon
Lei Shah
Thomas Lukasiewicz
CoGe
DRL
37
3
0
05 Apr 2023
Generative Causal Representation Learning for Out-of-Distribution Motion Forecasting
Shayan Shirahmad Gale Bagi
Zahra Gharaee
Oliver Schulte
Mark Crowley
OODD
OOD
26
12
0
17 Feb 2023
Disentangled Representation Learning
Xin Wang
Hong Chen
Siao Tang
Zihao Wu
Wenwu Zhu
DRL
35
78
0
21 Nov 2022
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
36
11
0
07 Nov 2022
DOT-VAE: Disentangling One Factor at a Time
Vaishnavi Patil
Matthew Evanusa
J. JáJá
CoGe
DRL
CML
23
1
0
19 Oct 2022
SW-VAE: Weakly Supervised Learn Disentangled Representation Via Latent Factor Swapping
Jiageng Zhu
Hanchen Xie
Wael AbdAlmageed
SSL
CoGe
DRL
35
4
0
21 Sep 2022
Weakly Supervised Invariant Representation Learning Via Disentangling Known and Unknown Nuisance Factors
Jiageng Zhu
Hanchen Xie
Wael AbdAlmageed
32
1
0
15 Sep 2022
Equivariant Disentangled Transformation for Domain Generalization under Combination Shift
Yivan Zhang
Jindong Wang
Xingxu Xie
Masashi Sugiyama
OOD
42
1
0
03 Aug 2022
GlanceNets: Interpretabile, Leak-proof Concept-based Models
Emanuele Marconato
Andrea Passerini
Stefano Teso
106
64
0
31 May 2022
From Statistical to Causal Learning
Bernhard Schölkopf
Julius von Kügelgen
CML
30
45
0
01 Apr 2022
Deconfounding to Explanation Evaluation in Graph Neural Networks
Yingmin Wu
Xiang Wang
An Zhang
Xia Hu
Fuli Feng
Xiangnan He
Tat-Seng Chua
FAtt
CML
17
14
0
21 Jan 2022
Disentanglement and Generalization Under Correlation Shifts
Christina M. Funke
Paul Vicol
Kuan-Chieh Jackson Wang
Matthias Kümmerer
R. Zemel
Matthias Bethge
OOD
39
7
0
29 Dec 2021
Latte: Cross-framework Python Package for Evaluation of Latent-Based Generative Models
Alon Jacovi
Junyoung Lee
Alexander Lerch
DRL
18
1
0
20 Dec 2021
On Causally Disentangled Representations
Abbavaram Gowtham Reddy
Benin Godfrey L
V. Balasubramanian
OOD
CML
34
21
0
10 Dec 2021
Towards Robust and Adaptive Motion Forecasting: A Causal Representation Perspective
Yuejiang Liu
Riccardo Cadei
Jonas Schweizer
Sherwin Bahmani
Alexandre Alahi
OOD
TTA
38
51
0
29 Nov 2021
Matching Learned Causal Effects of Neural Networks with Domain Priors
Sai Srinivas Kancheti
Abbavaram Gowtham Reddy
V. Balasubramanian
Amit Sharma
CML
36
12
0
24 Nov 2021
Self-Supervised Learning Disentangled Group Representation as Feature
Tan Wang
Zhongqi Yue
Jianqiang Huang
Qianru Sun
Hanwang Zhang
OOD
36
67
0
28 Oct 2021
Towards Principled Causal Effect Estimation by Deep Identifiable Models
Pengzhou (Abel) Wu
Kenji Fukumizu
BDL
OOD
CML
30
3
0
30 Sep 2021
Desiderata for Representation Learning: A Causal Perspective
Yixin Wang
Michael I. Jordan
CML
32
80
0
08 Sep 2021
What can the millions of random treatments in nonexperimental data reveal about causes?
Andre F. Ribeiro
Frank Neffke
Ricardo Hausmann
CML
28
1
0
03 May 2021
Causal Attention for Vision-Language Tasks
Xu Yang
Hanwang Zhang
Guojun Qi
Jianfei Cai
CML
28
148
0
05 Mar 2021
Counterfactual Zero-Shot and Open-Set Visual Recognition
Zhongqi Yue
Tan Wang
Hanwang Zhang
Qianru Sun
Xiansheng Hua
BDL
158
193
0
01 Mar 2021
Towards Building A Group-based Unsupervised Representation Disentanglement Framework
Tao Yang
Xuanchi Ren
Yuwang Wang
W. Zeng
Nanning Zheng
CoGe
DRL
19
27
0
20 Feb 2021
Counterfactual Generative Networks
Axel Sauer
Andreas Geiger
OOD
BDL
CML
41
123
0
15 Jan 2021
Measuring Disentanglement: A Review of Metrics
M. Carbonneau
Julian Zaïdi
Jonathan Boilard
G. Gagnon
CoGe
DRL
28
81
0
16 Dec 2020
Latent Causal Invariant Model
Xinwei Sun
Botong Wu
Xiangyu Zheng
Chang-Shu Liu
Wei Chen
Tao Qin
Tie-Yan Liu
OOD
CML
BDL
29
14
0
04 Nov 2020
On the Transfer of Disentangled Representations in Realistic Settings
Andrea Dittadi
Frederik Trauble
Francesco Locatello
M. Wuthrich
Vaibhav Agrawal
Ole Winther
Stefan Bauer
Bernhard Schölkopf
OOD
35
39
0
27 Oct 2020
Interventional Few-Shot Learning
Zhongqi Yue
Hanwang Zhang
Qianru Sun
Xiansheng Hua
26
225
0
28 Sep 2020
Causal Intervention for Weakly-Supervised Semantic Segmentation
Dong Zhang
Hanwang Zhang
Jinhui Tang
Xiansheng Hua
Qianru Sun
CML
ISeg
39
444
0
26 Sep 2020
Learning Disentangled Representations with Latent Variation Predictability
Xinqi Zhu
Chang Xu
Dacheng Tao
CoGe
DRL
22
26
0
25 Jul 2020
A causal view of compositional zero-shot recognition
Y. Atzmon
Felix Kreuk
Uri Shalit
Gal Chechik
OCL
BDL
CML
61
117
0
25 Jun 2020
Generative causal explanations of black-box classifiers
Matthew R. O’Shaughnessy
Gregory H. Canal
Marissa Connor
Mark A. Davenport
Christopher Rozell
CML
30
73
0
24 Jun 2020
Emergent Multi-Agent Communication in the Deep Learning Era
Angeliki Lazaridou
Marco Baroni
AI4CE
48
197
0
03 Jun 2020
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
Girish A. Koushik
Furui Liu
Zhitang Chen
Xinwei Shen
Jianye Hao
Jun Wang
OOD
CoGe
CML
41
44
0
18 Apr 2020
NestedVAE: Isolating Common Factors via Weak Supervision
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
DRL
26
21
0
26 Feb 2020
Causality-based Feature Selection: Methods and Evaluations
Kui Yu
Xianjie Guo
Lin Liu
Jiuyong Li
Hao Wang
Zhaolong Ling
Xindong Wu
CML
24
92
0
17 Nov 2019
Counterfactuals uncover the modular structure of deep generative models
M. Besserve
Arash Mehrjou
Rémy Sun
Bernhard Schölkopf
DRL
BDL
DiffM
19
107
0
08 Dec 2018
1