Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.11953
Cited By
Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift
29 October 2018
Stephan Rabanser
Stephan Günnemann
Zachary Chase Lipton
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift"
50 / 57 papers shown
Title
Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts
M. Zarlenga
Gabriele Dominici
Pietro Barbiero
Z. Shams
M. Jamnik
KELM
158
0
0
24 Apr 2025
Monitor and Recover: A Paradigm for Future Research on Distribution Shift in Learning-Enabled Cyber-Physical Systems
Vivian Lin
Insup Lee
33
0
0
18 Apr 2025
Efficient Learning Under Density Shift in Incremental Settings Using Cramér-Rao-Based Regularization
Behraj Khan
Behroz Mirza
Nouman Durrani
T. Syed
60
0
0
18 Feb 2025
In-Situ Fine-Tuning of Wildlife Models in IoT-Enabled Camera Traps for Efficient Adaptation
Mohammad Mehdi Rastikerdar
Jin Huang
Hui Guan
Deepak Ganesan
61
0
0
12 Sep 2024
Learning Run-time Safety Monitors for Machine Learning Components
Ozan Vardal
Richard Hawkins
Colin Paterson
Chiara Picardi
Daniel Omeiza
Lars Kunze
Ibrahim Habli
27
0
0
23 Jun 2024
Combine and Conquer: A Meta-Analysis on Data Shift and Out-of-Distribution Detection
Eduardo Dadalto
F. Alberge
Pierre Duhamel
Pablo Piantanida
OODD
48
0
0
23 Jun 2024
Open-Source Drift Detection Tools in Action: Insights from Two Use Cases
Rieke Müller
Mohamed Abdelaal
Davor Stjelja
26
1
0
29 Apr 2024
Out-of-Distribution Detection using Maximum Entropy Coding
M. Abolfazli
Mohammad Zaeri Amirani
Anders Høst-Madsen
June Zhang
A. Bratincsák
OOD
24
0
0
25 Apr 2024
Estimating Model Performance Under Covariate Shift Without Labels
Jakub Bialek
W. Kuberski
Nikolaos Perrakis
Albert Bifet
33
2
0
16 Jan 2024
SupEuclid: Extremely Simple, High Quality OoD Detection with Supervised Contrastive Learning and Euclidean Distance
J. Haas
OODD
12
0
0
21 Aug 2023
HoSNN: Adversarially-Robust Homeostatic Spiking Neural Networks with Adaptive Firing Thresholds
Hejia Geng
Peng Li
AAML
34
3
0
20 Aug 2023
Endogenous Macrodynamics in Algorithmic Recourse
Patrick Altmeyer
Giovan Angela
Aleksander Buszydlik
Karol Dobiczek
A. V. Deursen
Cynthia C. S. Liem
21
7
0
16 Aug 2023
Addressing caveats of neural persistence with deep graph persistence
Leander Girrbach
Anders Christensen
Ole Winther
Zeynep Akata
A. Sophia Koepke
GNN
18
1
0
20 Jul 2023
Rectifying Group Irregularities in Explanations for Distribution Shift
Adam Stein
Yinjun Wu
Eric Wong
Mayur Naik
27
1
0
25 May 2023
DEPLOYR: A technical framework for deploying custom real-time machine learning models into the electronic medical record
Conor K. Corbin
R. Maclay
Aakash Acharya
Sreedevi Mony
Soumya Punnathanam
Rahul Thapa
N. Kotecha
N. Shah
Jonathan H. Chen
15
17
0
11 Mar 2023
DC4L: Distribution Shift Recovery via Data-Driven Control for Deep Learning Models
Vivian Lin
Kuk Jin Jang
Souradeep Dutta
Michele Caprio
O. Sokolsky
Insup Lee
OOD
31
6
0
20 Feb 2023
Confidence-Aware Paced-Curriculum Learning by Label Smoothing for Surgical Scene Understanding
Mengya Xu
Mobarakol Islam
Ben Glocker
Hongliang Ren
31
1
0
22 Dec 2022
Online Distribution Shift Detection via Recency Prediction
Rachel Luo
Rohan Sinha
Yixiao Sun
Ali Hindy
Shengjia Zhao
Silvio Savarese
Edward Schmerling
Marco Pavone
15
9
0
17 Nov 2022
Testing for context-dependent changes in neural encoding in naturalistic experiments
Ye Chen
Carl Harris
Xiaoyu Ma
Zheng Li
Francisco Câmara Pereira
Charles Y.Zheng
31
0
0
17 Nov 2022
Capabilities for Better ML Engineering
Chenyang Yang
Rachel A. Brower-Sinning
Grace A. Lewis
Christian Kastner
Tongshuang Wu
24
3
0
11 Nov 2022
DC-Check: A Data-Centric AI checklist to guide the development of reliable machine learning systems
Nabeel Seedat
F. Imrie
M. Schaar
27
12
0
09 Nov 2022
Explanation Shift: Detecting distribution shifts on tabular data via the explanation space
Carlos Mougan
Klaus Broelemann
Gjergji Kasneci
T. Tiropanis
Steffen Staab
FAtt
27
7
0
22 Oct 2022
Towards Explaining Distribution Shifts
Sean Kulinski
David I. Inouye
OffRL
FAtt
35
24
0
19 Oct 2022
Operationalizing Machine Learning: An Interview Study
Shreya Shankar
Rolando Garcia
J. M. Hellerstein
Aditya G. Parameswaran
68
51
0
16 Sep 2022
Dataset Inference for Self-Supervised Models
Adam Dziedzic
Haonan Duan
Muhammad Ahmad Kaleem
Nikita Dhawan
Jonas Guan
Yannis Cattan
Franziska Boenisch
Nicolas Papernot
24
26
0
16 Sep 2022
Calibrated Selective Classification
Adam Fisch
Tommi Jaakkola
Regina Barzilay
23
16
0
25 Aug 2022
Imputation Strategies Under Clinical Presence: Impact on Algorithmic Fairness
Vincent Jeanselme
Maria De-Arteaga
Zhe Zhang
Jessica Barrett
Brian D. M. Tom
FaML
35
11
0
13 Aug 2022
PAC-Bayesian Domain Adaptation Bounds for Multiclass Learners
Anthony Sicilia
Katherine Atwell
Malihe Alikhani
Seong Jae Hwang
BDL
51
9
0
12 Jul 2022
GSCLIP : A Framework for Explaining Distribution Shifts in Natural Language
Zhiying Zhu
Weixin Liang
James Y. Zou
32
9
0
30 Jun 2022
Distilling Model Failures as Directions in Latent Space
Saachi Jain
Hannah Lawrence
Ankur Moitra
A. Madry
18
89
0
29 Jun 2022
Diagnostic Tool for Out-of-Sample Model Evaluation
Ludvig Hult
Dave Zachariah
Petre Stoica
14
1
0
22 Jun 2022
Online Learning with Bounded Recall
Jon Schneider
Kiran Vodrahalli
15
1
0
28 May 2022
Diagnosis and Prognosis of COVID-19 Disease Using Routine Blood Values and LogNNet Neural Network
M. T. Huyut
Andrei Velichko
24
32
0
20 May 2022
Perspectives on Incorporating Expert Feedback into Model Updates
Valerie Chen
Umang Bhatt
Hoda Heidari
Adrian Weller
Ameet Talwalkar
30
11
0
13 May 2022
CheXstray: Real-time Multi-Modal Data Concordance for Drift Detection in Medical Imaging AI
Arjun Soin
J. Merkow
Jin Long
Joseph Paul Cohen
Smitha Saligrama
Stephen Kaiser
Steven Borg
I. Tarapov
M. Lungren
OOD
48
15
0
06 Feb 2022
Active Learning Over Multiple Domains in Natural Language Tasks
Shayne Longpre
Julia Reisler
E. G. Huang
Yi Lu
Andrew J. Frank
Nikhil Ramesh
Chris DuBois
OOD
19
13
0
01 Feb 2022
Deconfounded Representation Similarity for Comparison of Neural Networks
Tianyu Cui
Yogesh Kumar
Pekka Marttinen
Samuel Kaski
CML
27
13
0
31 Jan 2022
Differentiable Gaussianization Layers for Inverse Problems Regularized by Deep Generative Models
Dongzhuo Li
MedIm
35
2
0
07 Dec 2021
RapidRead: Global Deployment of State-of-the-art Radiology AI for a Large Veterinary Teleradiology Practice
Michael Fitzke
Conrad Stack
Andre Dourson
Rodrigo M. B. Santana
Diane U Wilson
L. Ziemer
Arjun Soin
M. Lungren
Paul Fisher
Mark Parkinson
LM&MA
MedIm
16
5
0
09 Nov 2021
Mixture Proportion Estimation and PU Learning: A Modern Approach
Saurabh Garg
Yifan Wu
Alexander J. Smola
Sivaraman Balakrishnan
Zachary Chase Lipton
16
51
0
01 Nov 2021
Natural Attribute-based Shift Detection
Jeonghoon Park
Jimin Hong
Radhika Dua
Daehoon Gwak
Yixuan Li
Jaegul Choo
E. Choi
OOD
25
3
0
18 Oct 2021
Tracking the risk of a deployed model and detecting harmful distribution shifts
A. Podkopaev
Aaditya Ramdas
27
22
0
12 Oct 2021
Trustworthy AI: From Principles to Practices
Bo-wen Li
Peng Qi
Bo Liu
Shuai Di
Jingen Liu
Jiquan Pei
Jinfeng Yi
Bowen Zhou
119
355
0
04 Oct 2021
Deploying clinical machine learning? Consider the following...
Charles Lu
Kenglun Chang
Praveer Singh
S. Pomerantz
S. Doyle
Sujay S Kakarmath
Christopher P. Bridge
Jayashree Kalpathy-Cramer
49
4
0
14 Sep 2021
Pulling Up by the Causal Bootstraps: Causal Data Augmentation for Pre-training Debiasing
Sindhu C. M. Gowda
Shalmali Joshi
Haoran Zhang
Marzyeh Ghassemi
CML
26
8
0
27 Aug 2021
MultiBench: Multiscale Benchmarks for Multimodal Representation Learning
Paul Pu Liang
Yiwei Lyu
Xiang Fan
Zetian Wu
Yun Cheng
...
Peter Wu
Michelle A. Lee
Yuke Zhu
Ruslan Salakhutdinov
Louis-Philippe Morency
VLM
29
159
0
15 Jul 2021
Test for non-negligible adverse shifts
Vathy M. Kamulete
15
3
0
07 Jul 2021
Ensembling Shift Detectors: an Extensive Empirical Evaluation
Simona Maggio
L. Dreyfus-Schmidt
AI4TS
34
3
0
28 Jun 2021
GitTables: A Large-Scale Corpus of Relational Tables
Madelon Hulsebos
cCaugatay Demiralp
Paul T. Groth
LMTD
23
83
0
14 Jun 2021
InFlow: Robust outlier detection utilizing Normalizing Flows
Nishant Kumar
Pia Hanfeld
Michael Hecht
Michael Bussmann
Stefan Gumhold
Nico Hoffmann
OODD
OOD
TPM
21
4
0
10 Jun 2021
1
2
Next