ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.04946
  4. Cited By
A Riemann-Stein Kernel Method

A Riemann-Stein Kernel Method

11 October 2018
Alessandro Barp
Christine J. Oates
Emilio Porcu
Mark Girolami
ArXivPDFHTML

Papers citing "A Riemann-Stein Kernel Method"

41 / 41 papers shown
Title
Targeted Separation and Convergence with Kernel Discrepancies
Targeted Separation and Convergence with Kernel Discrepancies
Alessandro Barp
Carl-Johann Simon-Gabriel
Mark Girolami
Lester W. Mackey
96
15
0
26 Sep 2022
Measure Transport with Kernel Stein Discrepancy
Measure Transport with Kernel Stein Discrepancy
Matthew A. Fisher
T. Nolan
Matthew M. Graham
D. Prangle
Chris J. Oates
OT
79
15
0
22 Oct 2020
Optimal quantisation of probability measures using maximum mean
  discrepancy
Optimal quantisation of probability measures using maximum mean discrepancy
Onur Teymur
Jackson Gorham
M. Riabiz
Chris J. Oates
61
29
0
14 Oct 2020
Scalable Control Variates for Monte Carlo Methods via Stochastic
  Optimization
Scalable Control Variates for Monte Carlo Methods via Stochastic Optimization
Shijing Si
Chris J. Oates
Andrew B. Duncan
Lawrence Carin
F. Briol
BDL
50
21
0
12 Jun 2020
Optimal Thinning of MCMC Output
Optimal Thinning of MCMC Output
M. Riabiz
W. Chen
Jon Cockayne
P. Swietach
Steven Niederer
Lester W. Mackey
Chris J. Oates
62
47
0
08 May 2020
A diffusion approach to Stein's method on Riemannian manifolds
A diffusion approach to Stein's method on Riemannian manifolds
Huiling Le
Alexander Lewis
Karthik Bharath
C. Fallaize
OT
28
11
0
25 Mar 2020
Semi-Exact Control Functionals From Sard's Method
Semi-Exact Control Functionals From Sard's Method
Leah F. South
Toni Karvonen
Christopher Nemeth
Mark Girolami
Chris J. Oates
36
17
0
31 Jan 2020
The reproducing Stein kernel approach for post-hoc corrected sampling
The reproducing Stein kernel approach for post-hoc corrected sampling
Liam Hodgkinson
R. Salomone
Fred Roosta
65
27
0
25 Jan 2020
Variance reduction for Markov chains with application to MCMC
Variance reduction for Markov chains with application to MCMC
Denis Belomestny
L. Iosipoi
Eric Moulines
A. Naumov
S. Samsonov
BDL
46
30
0
08 Oct 2019
Maximum Mean Discrepancy Gradient Flow
Maximum Mean Discrepancy Gradient Flow
Michael Arbel
Anna Korba
Adil Salim
Arthur Gretton
103
163
0
11 Jun 2019
Reproducing kernel Hilbert spaces on manifolds: Sobolev and Diffusion
  spaces
Reproducing kernel Hilbert spaces on manifolds: Sobolev and Diffusion spaces
Ernesto De Vito
Nicole Mücke
Lorenzo Rosasco
36
27
0
27 May 2019
Stein Point Markov Chain Monte Carlo
Stein Point Markov Chain Monte Carlo
W. Chen
Alessandro Barp
François‐Xavier Briol
Jackson Gorham
Mark Girolami
Lester W. Mackey
Chris J. Oates
73
57
0
09 May 2019
Irreversible Langevin MCMC on Lie Groups
Irreversible Langevin MCMC on Lie Groups
Alexis Arnaudon
Alessandro Barp
So Takao
AI4CE
32
5
0
21 Mar 2019
Hamiltonian Monte Carlo on Symmetric and Homogeneous Spaces via
  Symplectic Reduction
Hamiltonian Monte Carlo on Symmetric and Homogeneous Spaces via Symplectic Reduction
Alessandro Barp
A. Kennedy
Mark Girolami
27
9
0
07 Mar 2019
A weighted Discrepancy Bound of quasi-Monte Carlo Importance Sampling
A weighted Discrepancy Bound of quasi-Monte Carlo Importance Sampling
J. Dick
Daniel Rudolf
Hou-Ying Zhu
25
10
0
21 Jan 2019
Stein Variational Gradient Descent Without Gradient
Stein Variational Gradient Descent Without Gradient
J. Han
Qiang Liu
81
45
0
07 Jun 2018
Neural Control Variates for Variance Reduction
Neural Control Variates for Variance Reduction
Ruosi Wan
Mingjun Zhong
Haoyi Xiong
Zhanxing Zhu
BDL
DRL
57
18
0
01 Jun 2018
Regularized Finite Dimensional Kernel Sobolev Discrepancy
Regularized Finite Dimensional Kernel Sobolev Discrepancy
Youssef Mroueh
18
4
0
16 May 2018
Stein Points
Stein Points
W. Chen
Lester W. Mackey
Jackson Gorham
François‐Xavier Briol
Chris J. Oates
60
102
0
27 Mar 2018
Intrinsic Gaussian processes on complex constrained domains
Intrinsic Gaussian processes on complex constrained domains
Mu Niu
P. Cheung
Lizhen Lin
Zhenwen Dai
Neil D. Lawrence
David B. Dunson
58
41
0
03 Jan 2018
Deterministic Sampling of Expensive Posteriors Using Minimum Energy
  Designs
Deterministic Sampling of Expensive Posteriors Using Minimum Energy Designs
V. R. Joseph
Dianpeng Wang
Li Gu
Shiji Lyu
Rui Tuo
25
36
0
24 Dec 2017
Riemannian Stein Variational Gradient Descent for Bayesian Inference
Riemannian Stein Variational Gradient Descent for Bayesian Inference
Chang-rui Liu
Jun Zhu
55
67
0
30 Nov 2017
Sobolev GAN
Sobolev GAN
Youssef Mroueh
Chun-Liang Li
Tom Sercu
Anant Raj
Yu Cheng
45
117
0
14 Nov 2017
Message Passing Stein Variational Gradient Descent
Message Passing Stein Variational Gradient Descent
Jingwei Zhuo
Chang-rui Liu
Jiaxin Shi
Jun Zhu
Ning Chen
Bo Zhang
54
92
0
13 Nov 2017
Measuring Sample Quality with Kernels
Measuring Sample Quality with Kernels
Jackson Gorham
Lester W. Mackey
118
223
0
06 Mar 2017
Geodesic Lagrangian Monte Carlo over the space of positive definite
  matrices: with application to Bayesian spectral density estimation
Geodesic Lagrangian Monte Carlo over the space of positive definite matrices: with application to Bayesian spectral density estimation
Andrew J Holbrook
Shiwei Lan
A. Vandenberg-Rodes
Babak Shahbaba
48
26
0
24 Dec 2016
Black-box Importance Sampling
Black-box Importance Sampling
Qiang Liu
Jason D. Lee
FAtt
59
74
0
17 Oct 2016
Support points
Support points
Simon Mak
V. R. Joseph
49
139
0
07 Sep 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
68
1,092
0
16 Aug 2016
Kernel Distribution Embeddings: Universal Kernels, Characteristic
  Kernels and Kernel Metrics on Distributions
Kernel Distribution Embeddings: Universal Kernels, Characteristic Kernels and Kernel Metrics on Distributions
Carl-Johann Simon-Gabriel
Bernhard Schölkopf
49
92
0
18 Apr 2016
Convergence Rates for a Class of Estimators Based on Stein's Method
Convergence Rates for a Class of Estimators Based on Stein's Method
Chris J. Oates
Jon Cockayne
F. Briol
Mark Girolami
48
57
0
10 Mar 2016
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model
  Evaluation
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation
Qiang Liu
Jason D. Lee
Michael I. Jordan
100
483
0
10 Feb 2016
A Kernel Test of Goodness of Fit
A Kernel Test of Goodness of Fit
Kacper P. Chwialkowski
Heiko Strathmann
Arthur Gretton
BDL
198
328
0
09 Feb 2016
Stein's method for comparison of univariate distributions
Stein's method for comparison of univariate distributions
Christophe Ley
Gesine Reinert
Yvik Swan
OT
75
149
0
13 Aug 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
452
16,933
0
20 Dec 2013
Spherical Hamiltonian Monte Carlo for Constrained Target Distributions
Spherical Hamiltonian Monte Carlo for Constrained Target Distributions
Shiwei Lan
Bo Zhou
Babak Shahbaba
82
58
0
17 Sep 2013
Geodesic Monte Carlo on Embedded Manifolds
Geodesic Monte Carlo on Embedded Manifolds
Simon Byrne
Mark Girolami
96
152
0
25 Jan 2013
Sampling From A Manifold
Sampling From A Manifold
P. Diaconis
Susan P. Holmes
M. Shahshahani
89
116
0
28 Jun 2012
Strictly and non-strictly positive definite functions on spheres
Strictly and non-strictly positive definite functions on spheres
T. Gneiting
154
320
0
30 Nov 2011
Zero Variance Markov Chain Monte Carlo for Bayesian Estimators
Zero Variance Markov Chain Monte Carlo for Bayesian Estimators
Antonietta Mira
R. Solgi
D. Imparato
91
89
0
14 Dec 2010
Universality, Characteristic Kernels and RKHS Embedding of Measures
Universality, Characteristic Kernels and RKHS Embedding of Measures
Bharath K. Sriperumbudur
Kenji Fukumizu
Gert R. G. Lanckriet
216
530
0
03 Mar 2010
1