Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.04946
Cited By
A Riemann-Stein Kernel Method
11 October 2018
Alessandro Barp
Christine J. Oates
Emilio Porcu
Mark Girolami
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Riemann-Stein Kernel Method"
41 / 41 papers shown
Title
Targeted Separation and Convergence with Kernel Discrepancies
Alessandro Barp
Carl-Johann Simon-Gabriel
Mark Girolami
Lester W. Mackey
96
15
0
26 Sep 2022
Measure Transport with Kernel Stein Discrepancy
Matthew A. Fisher
T. Nolan
Matthew M. Graham
D. Prangle
Chris J. Oates
OT
79
15
0
22 Oct 2020
Optimal quantisation of probability measures using maximum mean discrepancy
Onur Teymur
Jackson Gorham
M. Riabiz
Chris J. Oates
61
29
0
14 Oct 2020
Scalable Control Variates for Monte Carlo Methods via Stochastic Optimization
Shijing Si
Chris J. Oates
Andrew B. Duncan
Lawrence Carin
F. Briol
BDL
50
21
0
12 Jun 2020
Optimal Thinning of MCMC Output
M. Riabiz
W. Chen
Jon Cockayne
P. Swietach
Steven Niederer
Lester W. Mackey
Chris J. Oates
62
47
0
08 May 2020
A diffusion approach to Stein's method on Riemannian manifolds
Huiling Le
Alexander Lewis
Karthik Bharath
C. Fallaize
OT
28
11
0
25 Mar 2020
Semi-Exact Control Functionals From Sard's Method
Leah F. South
Toni Karvonen
Christopher Nemeth
Mark Girolami
Chris J. Oates
36
17
0
31 Jan 2020
The reproducing Stein kernel approach for post-hoc corrected sampling
Liam Hodgkinson
R. Salomone
Fred Roosta
65
27
0
25 Jan 2020
Variance reduction for Markov chains with application to MCMC
Denis Belomestny
L. Iosipoi
Eric Moulines
A. Naumov
S. Samsonov
BDL
46
30
0
08 Oct 2019
Maximum Mean Discrepancy Gradient Flow
Michael Arbel
Anna Korba
Adil Salim
Arthur Gretton
103
163
0
11 Jun 2019
Reproducing kernel Hilbert spaces on manifolds: Sobolev and Diffusion spaces
Ernesto De Vito
Nicole Mücke
Lorenzo Rosasco
36
27
0
27 May 2019
Stein Point Markov Chain Monte Carlo
W. Chen
Alessandro Barp
François‐Xavier Briol
Jackson Gorham
Mark Girolami
Lester W. Mackey
Chris J. Oates
73
57
0
09 May 2019
Irreversible Langevin MCMC on Lie Groups
Alexis Arnaudon
Alessandro Barp
So Takao
AI4CE
32
5
0
21 Mar 2019
Hamiltonian Monte Carlo on Symmetric and Homogeneous Spaces via Symplectic Reduction
Alessandro Barp
A. Kennedy
Mark Girolami
27
9
0
07 Mar 2019
A weighted Discrepancy Bound of quasi-Monte Carlo Importance Sampling
J. Dick
Daniel Rudolf
Hou-Ying Zhu
25
10
0
21 Jan 2019
Stein Variational Gradient Descent Without Gradient
J. Han
Qiang Liu
81
45
0
07 Jun 2018
Neural Control Variates for Variance Reduction
Ruosi Wan
Mingjun Zhong
Haoyi Xiong
Zhanxing Zhu
BDL
DRL
57
18
0
01 Jun 2018
Regularized Finite Dimensional Kernel Sobolev Discrepancy
Youssef Mroueh
18
4
0
16 May 2018
Stein Points
W. Chen
Lester W. Mackey
Jackson Gorham
François‐Xavier Briol
Chris J. Oates
60
102
0
27 Mar 2018
Intrinsic Gaussian processes on complex constrained domains
Mu Niu
P. Cheung
Lizhen Lin
Zhenwen Dai
Neil D. Lawrence
David B. Dunson
58
41
0
03 Jan 2018
Deterministic Sampling of Expensive Posteriors Using Minimum Energy Designs
V. R. Joseph
Dianpeng Wang
Li Gu
Shiji Lyu
Rui Tuo
25
36
0
24 Dec 2017
Riemannian Stein Variational Gradient Descent for Bayesian Inference
Chang-rui Liu
Jun Zhu
55
67
0
30 Nov 2017
Sobolev GAN
Youssef Mroueh
Chun-Liang Li
Tom Sercu
Anant Raj
Yu Cheng
45
117
0
14 Nov 2017
Message Passing Stein Variational Gradient Descent
Jingwei Zhuo
Chang-rui Liu
Jiaxin Shi
Jun Zhu
Ning Chen
Bo Zhang
54
92
0
13 Nov 2017
Measuring Sample Quality with Kernels
Jackson Gorham
Lester W. Mackey
118
223
0
06 Mar 2017
Geodesic Lagrangian Monte Carlo over the space of positive definite matrices: with application to Bayesian spectral density estimation
Andrew J Holbrook
Shiwei Lan
A. Vandenberg-Rodes
Babak Shahbaba
48
26
0
24 Dec 2016
Black-box Importance Sampling
Qiang Liu
Jason D. Lee
FAtt
59
74
0
17 Oct 2016
Support points
Simon Mak
V. R. Joseph
49
139
0
07 Sep 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
68
1,092
0
16 Aug 2016
Kernel Distribution Embeddings: Universal Kernels, Characteristic Kernels and Kernel Metrics on Distributions
Carl-Johann Simon-Gabriel
Bernhard Schölkopf
49
92
0
18 Apr 2016
Convergence Rates for a Class of Estimators Based on Stein's Method
Chris J. Oates
Jon Cockayne
F. Briol
Mark Girolami
48
57
0
10 Mar 2016
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation
Qiang Liu
Jason D. Lee
Michael I. Jordan
100
483
0
10 Feb 2016
A Kernel Test of Goodness of Fit
Kacper P. Chwialkowski
Heiko Strathmann
Arthur Gretton
BDL
198
328
0
09 Feb 2016
Stein's method for comparison of univariate distributions
Christophe Ley
Gesine Reinert
Yvik Swan
OT
75
149
0
13 Aug 2014
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
452
16,933
0
20 Dec 2013
Spherical Hamiltonian Monte Carlo for Constrained Target Distributions
Shiwei Lan
Bo Zhou
Babak Shahbaba
82
58
0
17 Sep 2013
Geodesic Monte Carlo on Embedded Manifolds
Simon Byrne
Mark Girolami
96
152
0
25 Jan 2013
Sampling From A Manifold
P. Diaconis
Susan P. Holmes
M. Shahshahani
89
116
0
28 Jun 2012
Strictly and non-strictly positive definite functions on spheres
T. Gneiting
154
320
0
30 Nov 2011
Zero Variance Markov Chain Monte Carlo for Bayesian Estimators
Antonietta Mira
R. Solgi
D. Imparato
91
89
0
14 Dec 2010
Universality, Characteristic Kernels and RKHS Embedding of Measures
Bharath K. Sriperumbudur
Kenji Fukumizu
Gert R. G. Lanckriet
216
530
0
03 Mar 2010
1