ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.03982
  4. Cited By
Deep Decoder: Concise Image Representations from Untrained
  Non-convolutional Networks

Deep Decoder: Concise Image Representations from Untrained Non-convolutional Networks

2 October 2018
Reinhard Heckel
Paul Hand
ArXivPDFHTML

Papers citing "Deep Decoder: Concise Image Representations from Untrained Non-convolutional Networks"

50 / 52 papers shown
Title
DIPLI: Deep Image Prior Lucky Imaging for Blind Astronomical Image Restoration
DIPLI: Deep Image Prior Lucky Imaging for Blind Astronomical Image Restoration
Suraj Singh
Anastasia Batsheva
Oleg Y. Rogov
Ahmed Bouridane
46
0
0
20 Mar 2025
Probabilistic Joint Recovery Method for CO$_2$ Plume Monitoring
Probabilistic Joint Recovery Method for CO2_22​ Plume Monitoring
Zijun Deng
Rafael Orozco
A. Gahlot
Felix J. Herrmann
120
0
0
30 Jan 2025
Ambient Diffusion Posterior Sampling: Solving Inverse Problems with Diffusion Models Trained on Corrupted Data
Ambient Diffusion Posterior Sampling: Solving Inverse Problems with Diffusion Models Trained on Corrupted Data
Asad Aali
Giannis Daras
Brett Levac
Sidharth Kumar
Alexandros G. Dimakis
Jonathan I. Tamir
MedIm
64
12
0
13 Mar 2024
Deep Internal Learning: Deep Learning from a Single Input
Deep Internal Learning: Deep Learning from a Single Input
Tom Tirer
Raja Giryes
Se Young Chun
Yonina C. Eldar
34
3
0
12 Dec 2023
K-band: Self-supervised MRI Reconstruction via Stochastic Gradient
  Descent over K-space Subsets
K-band: Self-supervised MRI Reconstruction via Stochastic Gradient Descent over K-space Subsets
Frédéric Wang
Han Qi
A. D. Goyeneche
Reinhard Heckel
Michael Lustig
Efrat Shimron
33
5
0
05 Aug 2023
Learning Kernel-Modulated Neural Representation for Efficient Light
  Field Compression
Learning Kernel-Modulated Neural Representation for Efficient Light Field Compression
Jinglei Shi
Yihong Xu
C. Guillemot
24
6
0
12 Jul 2023
Learning-based Spatial and Angular Information Separation for Light Field Compression
Jinglei Shi
Yihong Xu
C. Guillemot
21
0
0
13 Apr 2023
Discovering Structure From Corruption for Unsupervised Image
  Reconstruction
Discovering Structure From Corruption for Unsupervised Image Reconstruction
Oscar Leong
Angela F. Gao
He Sun
Katherine Bouman
29
5
0
12 Apr 2023
Image Reconstruction without Explicit Priors
Image Reconstruction without Explicit Priors
Angela F. Gao
Oscar Leong
He Sun
Katherine Bouman
16
8
0
21 Mar 2023
Compressive Sensing with Tensorized Autoencoder
Compressive Sensing with Tensorized Autoencoder
Rakib Hyder
M. Salman Asif
18
0
0
10 Mar 2023
Unsupervised Superpixel Generation using Edge-Sparse Embedding
Unsupervised Superpixel Generation using Edge-Sparse Embedding
Jakob Geusen
G. Bredell
Tianfei Zhou
E. Konukoglu
SupR
10
0
0
28 Nov 2022
Misspecified Phase Retrieval with Generative Priors
Misspecified Phase Retrieval with Generative Priors
Zhaoqiang Liu
Xinshao Wang
Jiulong Liu
43
4
0
11 Oct 2022
MetaDIP: Accelerating Deep Image Prior with Meta Learning
MetaDIP: Accelerating Deep Image Prior with Meta Learning
Kevin Zhang
Mingyang Xie
Maharshi Gor
Yi-Ting Chen
Yvonne Zhou
Christopher A. Metzler
AI4CE
18
5
0
18 Sep 2022
Score-Guided Intermediate Layer Optimization: Fast Langevin Mixing for
  Inverse Problems
Score-Guided Intermediate Layer Optimization: Fast Langevin Mixing for Inverse Problems
Giannis Daras
Y. Dagan
A. Dimakis
C. Daskalakis
BDL
31
15
0
18 Jun 2022
Non-Iterative Recovery from Nonlinear Observations using Generative
  Models
Non-Iterative Recovery from Nonlinear Observations using Generative Models
Jiulong Liu
Zhaoqiang Liu
38
11
0
31 May 2022
DH-GAN: A Physics-driven Untrained Generative Adversarial Network for 3D
  Microscopic Imaging using Digital Holography
DH-GAN: A Physics-driven Untrained Generative Adversarial Network for 3D Microscopic Imaging using Digital Holography
Xiwen Chen
Hongya Wang
Abofazl Razi
M. Kozicki
C. Mann
DiffM
19
1
0
25 May 2022
Signal Recovery with Non-Expansive Generative Network Priors
Signal Recovery with Non-Expansive Generative Network Priors
Jorio Cocola
21
1
0
24 Apr 2022
DeepTensor: Low-Rank Tensor Decomposition with Deep Network Priors
DeepTensor: Low-Rank Tensor Decomposition with Deep Network Priors
Vishwanath Saragadam
Randall Balestriero
Ashok Veeraraghavan
Richard G. Baraniuk
27
15
0
07 Apr 2022
Computing Multiple Image Reconstructions with a Single Hypernetwork
Computing Multiple Image Reconstructions with a Single Hypernetwork
Alan Q. Wang
Adrian V. Dalca
M. Sabuncu
38
8
0
22 Feb 2022
Image-to-Image MLP-mixer for Image Reconstruction
Image-to-Image MLP-mixer for Image Reconstruction
Youssef Mansour
Kang Lin
Reinhard Heckel
SupR
31
15
0
04 Feb 2022
Validation and Generalizability of Self-Supervised Image Reconstruction
  Methods for Undersampled MRI
Validation and Generalizability of Self-Supervised Image Reconstruction Methods for Undersampled MRI
Thomas Yu
T. Hilbert
G. Piredda
Arun A. Joseph
G. Bonanno
...
P. Omoumi
Meritxell Bach Cuadra
Erick Jorge Canales-Rodríguez
Thomas Kober
Jean-Philippe Thiran
29
5
0
29 Jan 2022
Early Stopping for Deep Image Prior
Early Stopping for Deep Image Prior
Hengkang Wang
Taihui Li
Zhong Zhuang
Tiancong Chen
Hengyue Liang
Ju Sun
26
63
0
11 Dec 2021
An Educated Warm Start For Deep Image Prior-Based Micro CT
  Reconstruction
An Educated Warm Start For Deep Image Prior-Based Micro CT Reconstruction
Riccardo Barbano
Johannes Leuschner
Maximilian Schmidt
Alexander Denker
A. Hauptmann
Peter Maass
Bangti Jin
39
19
0
23 Nov 2021
Variational framework for partially-measured physical system control:
  examples of vision neuroscience and optical random media
Variational framework for partially-measured physical system control: examples of vision neuroscience and optical random media
Babak Rahmani
D. Psaltis
C. Moser
VGen
DRL
21
1
0
25 Oct 2021
Inverse Problems Leveraging Pre-trained Contrastive Representations
Inverse Problems Leveraging Pre-trained Contrastive Representations
Sriram Ravula
Georgios Smyrnis
Matt Jordan
A. Dimakis
SSL
35
9
0
14 Oct 2021
Deep Bayesian inference for seismic imaging with tasks
Deep Bayesian inference for seismic imaging with tasks
Ali Siahkoohi
G. Rizzuti
Felix J. Herrmann
BDL
UQCV
40
21
0
10 Oct 2021
Untrained Graph Neural Networks for Denoising
Untrained Graph Neural Networks for Denoising
Samuel Rey
Santiago Segarra
Reinhard Heckel
A. Marques
32
28
0
24 Sep 2021
Thermal Image Processing via Physics-Inspired Deep Networks
Thermal Image Processing via Physics-Inspired Deep Networks
Vishwanath Saragadam
Akshat Dave
Ashok Veeraraghavan
Richard Baraniuk
AI4CE
19
15
0
18 Aug 2021
Robust Compressed Sensing MRI with Deep Generative Priors
Robust Compressed Sensing MRI with Deep Generative Priors
A. Jalal
Marius Arvinte
Giannis Daras
Eric Price
A. Dimakis
Jonathan I. Tamir
MedIm
41
322
0
03 Aug 2021
On Measuring and Controlling the Spectral Bias of the Deep Image Prior
On Measuring and Controlling the Spectral Bias of the Deep Image Prior
Prithvijit Chakrabarty
Pascal Mettes
Subhransu Maji
Cees G. M. Snoek
13
60
0
02 Jul 2021
Fairness for Image Generation with Uncertain Sensitive Attributes
Fairness for Image Generation with Uncertain Sensitive Attributes
A. Jalal
Sushrut Karmalkar
Jessica Hoffmann
A. Dimakis
Eric Price
DiffM
35
39
0
23 Jun 2021
Instance-Optimal Compressed Sensing via Posterior Sampling
Instance-Optimal Compressed Sensing via Posterior Sampling
A. Jalal
Sushrut Karmalkar
A. Dimakis
Eric Price
26
51
0
21 Jun 2021
Unsupervised Shape Completion via Deep Prior in the Neural Tangent
  Kernel Perspective
Unsupervised Shape Completion via Deep Prior in the Neural Tangent Kernel Perspective
Lei Chu
Hao Pan
Wenping Wang
3DPC
34
11
0
19 Apr 2021
Generator Surgery for Compressed Sensing
Generator Surgery for Compressed Sensing
Niklas Smedemark-Margulies
Jung Yeon Park
Max Daniels
Rose Yu
Jan-Willem van de Meent
Paul Hand
GAN
MedIm
26
6
0
22 Feb 2021
Deep generative demixing: Recovering Lipschitz signals from noisy
  subgaussian mixtures
Deep generative demixing: Recovering Lipschitz signals from noisy subgaussian mixtures
Aaron Berk
16
0
0
13 Oct 2020
mpNet: variable depth unfolded neural network for massive MIMO channel
  estimation
mpNet: variable depth unfolded neural network for massive MIMO channel estimation
Taha Yassine
Luc Le Magoarou
11
25
0
07 Aug 2020
Multi-Scale Deep Compressive Imaging
Multi-Scale Deep Compressive Imaging
Thuong Nguyen Canh
B. Jeon
15
17
0
03 Aug 2020
You Only Look Yourself: Unsupervised and Untrained Single Image Dehazing
  Neural Network
You Only Look Yourself: Unsupervised and Untrained Single Image Dehazing Neural Network
Boyun Li
Yuanbiao Gou
Shuhang Gu
Jerry Liu
Qiufeng Wang
Xi Peng
15
197
0
30 Jun 2020
Robust Compressed Sensing using Generative Models
Robust Compressed Sensing using Generative Models
A. Jalal
Liu Liu
A. Dimakis
C. Caramanis
21
39
0
16 Jun 2020
Deep Learning Techniques for Inverse Problems in Imaging
Deep Learning Techniques for Inverse Problems in Imaging
Greg Ongie
A. Jalal
Christopher A. Metzler
Richard G. Baraniuk
A. Dimakis
Rebecca Willett
13
520
0
12 May 2020
Compressive sensing with un-trained neural networks: Gradient descent
  finds the smoothest approximation
Compressive sensing with un-trained neural networks: Gradient descent finds the smoothest approximation
Reinhard Heckel
Mahdi Soltanolkotabi
6
79
0
07 May 2020
Solving Inverse Problems with a Flow-based Noise Model
Solving Inverse Problems with a Flow-based Noise Model
Jay Whang
Qi Lei
A. Dimakis
64
36
0
18 Mar 2020
Reducing the Representation Error of GAN Image Priors Using the Deep
  Decoder
Reducing the Representation Error of GAN Image Priors Using the Deep Decoder
Max Daniels
Paul Hand
Reinhard Heckel
GAN
25
2
0
23 Jan 2020
Denoising and Regularization via Exploiting the Structural Bias of
  Convolutional Generators
Denoising and Regularization via Exploiting the Structural Bias of Convolutional Generators
Reinhard Heckel
Mahdi Soltanolkotabi
DiffM
35
81
0
31 Oct 2019
Low Shot Learning with Untrained Neural Networks for Imaging Inverse
  Problems
Low Shot Learning with Untrained Neural Networks for Imaging Inverse Problems
Oscar Leong
W. Sakla
GAN
14
7
0
23 Oct 2019
Algorithmic Guarantees for Inverse Imaging with Untrained Network Priors
Algorithmic Guarantees for Inverse Imaging with Untrained Network Priors
Gauri Jagatap
C. Hegde
26
70
0
20 Jun 2019
Invertible generative models for inverse problems: mitigating
  representation error and dataset bias
Invertible generative models for inverse problems: mitigating representation error and dataset bias
Muhammad Asim
Max Daniels
Oscar Leong
Ali Ahmed
Paul Hand
23
146
0
28 May 2019
One-dimensional Deep Image Prior for Time Series Inverse Problems
One-dimensional Deep Image Prior for Time Series Inverse Problems
Sriram Ravula
A. Dimakis
42
7
0
18 Apr 2019
Controlling Neural Networks via Energy Dissipation
Controlling Neural Networks via Energy Dissipation
Michael Möller
Thomas Möllenhoff
Daniel Cremers
33
17
0
05 Apr 2019
DeepRED: Deep Image Prior Powered by RED
DeepRED: Deep Image Prior Powered by RED
G. Mataev
Michael Elad
P. Milanfar
SupR
23
191
0
25 Mar 2019
12
Next