Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.00760
Cited By
Riemannian Adaptive Optimization Methods
1 October 2018
Gary Bécigneul
O. Ganea
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Riemannian Adaptive Optimization Methods"
50 / 54 papers shown
Title
Online Functional Principal Component Analysis on a Multidimensional Domain
Muye Nanshan
Nan Zhang
Jiguo Cao
23
0
0
04 May 2025
SPD Learning for Covariance-Based Neuroimaging Analysis: Perspectives, Methods, and Challenges
Ce Ju
Reinmar J. Kobler
Antoine Collas
M. Kawanabe
Cuntai Guan
Bertrand Thirion
46
0
0
26 Apr 2025
Learning Isometric Embeddings of Road Networks using Multidimensional Scaling
Juan Carlos Climent Pardo
42
0
0
24 Apr 2025
LGIN: Defining an Approximately Powerful Hyperbolic GNN
Srinitish Srinivasan
Omkumar CU
AI4CE
45
0
0
31 Mar 2025
OstQuant: Refining Large Language Model Quantization with Orthogonal and Scaling Transformations for Better Distribution Fitting
Xing Hu
Yuan Cheng
Dawei Yang
Zukang Xu
Zhihang Yuan
Jiangyong Yu
Chen Xu
Zhe Jiang
Sifan Zhou
MQ
41
6
0
23 Jan 2025
Neural Network Matrix Product Operator: A Multi-Dimensionally Integrable Machine Learning Potential
Kentaro Hino
Yuki Kurashige
34
0
0
31 Oct 2024
On Probabilistic Pullback Metrics for Latent Hyperbolic Manifolds
Luis Augenstein
Noémie Jaquier
Tamim Asfour
Leonel Rozo
26
0
0
28 Oct 2024
A Riemannian Framework for Learning Reduced-order Lagrangian Dynamics
Katharina Friedl
Noémie Jaquier
Jens Lundell
Tamim Asfour
Danica Kragic
AI4CE
28
0
0
24 Oct 2024
Compositional Entailment Learning for Hyperbolic Vision-Language Models
Avik Pal
Max van Spengler
Guido Maria DÁmely di Melendugno
Alessandro Flaborea
Fabio Galasso
Pascal Mettes
CoGe
48
5
0
09 Oct 2024
HVT: A Comprehensive Vision Framework for Learning in Non-Euclidean Space
Jacob Fein-Ashley
Ethan Feng
Minh Pham
32
3
0
25 Sep 2024
Geometry Aware Meta-Learning Neural Network for Joint Phase and Precoder Optimization in RIS
Dahlia Devapriya
Sheetal Kalyani
25
0
0
17 Sep 2024
Mixed-Curvature Decision Trees and Random Forests
Philippe Chlenski
Quentin Chu
I. Pe’er
36
1
0
07 Jun 2024
Three Revisits to Node-Level Graph Anomaly Detection: Outliers, Message Passing and Hyperbolic Neural Networks
Jing Gu
Dongmian Zou
37
3
0
06 Mar 2024
Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein
Hugues van Assel
Cédric Vincent-Cuaz
Nicolas Courty
Rémi Flamary
Pascal Frossard
Titouan Vayer
26
4
0
03 Feb 2024
Product Manifold Representations for Learning on Biological Pathways
Daniel McNeela
Frederic Sala
A. Gitter
GNN
72
2
0
27 Jan 2024
GaussianHead: High-fidelity Head Avatars with Learnable Gaussian Derivation
Jie Wang
Jiucheng Xie
Xianyan Li
Feng Xu
Chi-Man Pun
Hao Gao
3DGS
41
23
0
04 Dec 2023
A survey of manifold learning and its applications for multimedia
Hannes Fassold
42
1
0
08 Sep 2023
Warped geometric information on the optimisation of Euclidean functions
M. Hartmann
Bernardo Williams
Hanlin Yu
Mark Girolami
Alessandro Barp
Arto Klami
24
2
0
16 Aug 2023
Get the Best of Both Worlds: Improving Accuracy and Transferability by Grassmann Class Representation
Haoqi Wang
Zhizhong Li
Wayne Zhang
23
2
0
03 Aug 2023
Hyperbolic Representation Learning: Revisiting and Advancing
Menglin Yang
Min Zhou
Rex Ying
Yankai Chen
Irwin King
40
20
0
15 Jun 2023
Hyperbolic Convolution via Kernel Point Aggregation
Eric Qu
Dongmian Zou
45
3
0
15 Jun 2023
Fully Hyperbolic Convolutional Neural Networks for Computer Vision
Ahmad Bdeir
Kristian Schwethelm
Niels Landwehr
41
10
0
28 Mar 2023
Faster Riemannian Newton-type Optimization by Subsampling and Cubic Regularization
Yian Deng
Tingting Mu
21
1
0
22 Feb 2023
A Survey of Geometric Optimization for Deep Learning: From Euclidean Space to Riemannian Manifold
Yanhong Fei
Xian Wei
Yingjie Liu
Zhengyu Li
Mingsong Chen
28
6
0
16 Feb 2023
Hierarchical Explanations for Video Action Recognition
Sadaf Gulshad
Teng Long
Nanne van Noord
FAtt
29
6
0
01 Jan 2023
Bayesian Learning for Neural Networks: an algorithmic survey
M. Magris
Alexandros Iosifidis
BDL
DRL
35
68
0
21 Nov 2022
Auto-Encoding Goodness of Fit
A. Palmer
Zhiyi Chi
Derek Aguiar
J. Bi
41
1
0
12 Oct 2022
Hyperbolic Deep Reinforcement Learning
Edoardo Cetin
B. Chamberlain
Michael M. Bronstein
Jonathan J. Hunt
43
21
0
04 Oct 2022
Rethinking the compositionality of point clouds through regularization in the hyperbolic space
Antonio Montanaro
D. Valsesia
E. Magli
3DPC
46
31
0
21 Sep 2022
Text Enriched Sparse Hyperbolic Graph Convolutional Networks
Nurendra Choudhary
Nikhil S. Rao
Karthik Subbian
Chandan K. Reddy
28
0
0
06 Jul 2022
SPD domain-specific batch normalization to crack interpretable unsupervised domain adaptation in EEG
Reinmar J. Kobler
J. Hirayama
Qibin Zhao
M. Kawanabe
19
53
0
02 Jun 2022
Heterogeneous manifolds for curvature-aware graph embedding
Francesco Di Giovanni
Giulia Luise
M. Bronstein
64
23
0
02 Feb 2022
GeomNet: A Neural Network Based on Riemannian Geometries of SPD Matrix Space and Cholesky Space for 3D Skeleton-Based Interaction Recognition
X. Nguyen
3DH
19
33
0
25 Nov 2021
Grassmannian learning mutual subspace method for image set recognition
L. S. Souza
Naoya Sogi
B. Gatto
Takumi Kobayashi
Kazuhiro Fukui
19
11
0
08 Nov 2021
Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices
F. López
Beatrice Pozzetti
Steve J. Trettel
Michael Strube
Anna Wienhard
39
17
0
26 Oct 2021
Transductive Few-Shot Classification on the Oblique Manifold
Guodong Qi
Huimin Yu
Zhaohui Lu
Shuzhao Li
19
45
0
09 Aug 2021
Coordinate descent on the orthogonal group for recurrent neural network training
E. Massart
V. Abrol
37
10
0
30 Jul 2021
An Online Riemannian PCA for Stochastic Canonical Correlation Analysis
Zihang Meng
Rudrasis Chakraborty
Vikas Singh
9
9
0
08 Jun 2021
Learning the Predictability of the Future
Dídac Surís
Ruoshi Liu
Carl Vondrick
24
71
0
01 Jan 2021
Self-Supervised Hyperboloid Representations from Logical Queries over Knowledge Graphs
Nurendra Choudhary
Nikhil S. Rao
S. Katariya
Karthik Subbian
Chandan K. Reddy
16
64
0
23 Dec 2020
A Fully Hyperbolic Neural Model for Hierarchical Multi-Class Classification
F. López
Michael Strube
15
28
0
05 Oct 2020
From Trees to Continuous Embeddings and Back: Hyperbolic Hierarchical Clustering
Ines Chami
Albert Gu
Vaggos Chatziafratis
Christopher Ré
23
95
0
01 Oct 2020
Riemannian stochastic recursive momentum method for non-convex optimization
Andi Han
Junbin Gao
ODL
28
17
0
11 Aug 2020
Riemannian Continuous Normalizing Flows
Emile Mathieu
Maximilian Nickel
AI4CE
27
119
0
18 Jun 2020
Machine Learning on Graphs: A Model and Comprehensive Taxonomy
Ines Chami
Sami Abu-El-Haija
Bryan Perozzi
Christopher Ré
Kevin Patrick Murphy
22
285
0
07 May 2020
Time Series Alignment with Global Invariances
Titouan Vayer
R. Tavenard
Laetitia Chapel
Nicolas Courty
Rémi Flamary
Yann Soullard
AI4TS
24
16
0
10 Feb 2020
Efficient Riemannian Optimization on the Stiefel Manifold via the Cayley Transform
Jun Li
Fuxin Li
S. Todorovic
24
102
0
04 Feb 2020
Quaternion Equivariant Capsule Networks for 3D Point Clouds
Yongheng Zhao
Tolga Birdal
J. E. Lenssen
Emanuele Menegatti
Leonidas J. Guibas
Federico Tombari
3DPC
26
88
0
27 Dec 2019
Mixed-curvature Variational Autoencoders
Ondrej Skopek
O. Ganea
Gary Bécigneul
CML
DRL
BDL
30
101
0
19 Nov 2019
Hyperbolic Graph Neural Networks
Qi Liu
Maximilian Nickel
Douwe Kiela
AI4CE
GNN
45
370
0
28 Oct 2019
1
2
Next