ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.11169
  4. Cited By
Propagation Networks for Model-Based Control Under Partial Observation

Propagation Networks for Model-Based Control Under Partial Observation

28 September 2018
Yunzhu Li
Jiajun Wu
Jun-Yan Zhu
J. Tenenbaum
Antonio Torralba
Russ Tedrake
    AI4CE
ArXivPDFHTML

Papers citing "Propagation Networks for Model-Based Control Under Partial Observation"

26 / 26 papers shown
Title
BaB-ND: Long-Horizon Motion Planning with Branch-and-Bound and Neural Dynamics
Keyi Shen
Jiangwei Yu
Huan Zhang
Yunzhu Li
Yunzhu Li
132
1
0
12 Dec 2024
Object-centric proto-symbolic behavioural reasoning from pixels
Object-centric proto-symbolic behavioural reasoning from pixels
R. S. V. Bergen
Justus F. Hübotter
Pablo Lanillos
LM&Ro
OCL
146
1
0
26 Nov 2024
Compositional Physical Reasoning of Objects and Events from Videos
Compositional Physical Reasoning of Objects and Events from Videos
Zhenfang Chen
Shilong Dong
Kexin Yi
Yunzhu Li
Mingyu Ding
Antonio Torralba
Joshua B. Tenenbaum
Chuang Gan
OCL
91
2
0
02 Aug 2024
Graph networks as learnable physics engines for inference and control
Graph networks as learnable physics engines for inference and control
Alvaro Sanchez-Gonzalez
N. Heess
Jost Tobias Springenberg
J. Merel
Martin Riedmiller
R. Hadsell
Peter W. Battaglia
GNN
AI4CE
PINN
OCL
176
599
0
04 Jun 2018
Universal Planning Networks
Universal Planning Networks
A. Srinivas
Allan Jabri
Pieter Abbeel
Sergey Levine
Chelsea Finn
SSL
68
145
0
02 Apr 2018
Taking Visual Motion Prediction To New Heightfields
Taking Visual Motion Prediction To New Heightfields
Sébastien Ehrhardt
Áron Monszpart
Niloy Mitra
Andrea Vedaldi
42
23
0
22 Dec 2017
TreeQN and ATreeC: Differentiable Tree-Structured Models for Deep
  Reinforcement Learning
TreeQN and ATreeC: Differentiable Tree-Structured Models for Deep Reinforcement Learning
Gregory Farquhar
Tim Rocktaschel
Maximilian Igl
Shimon Whiteson
OffRL
58
71
0
31 Oct 2017
Fundamental Limitations in Performance and Interpretability of Common
  Planar Rigid-Body Contact Models
Fundamental Limitations in Performance and Interpretability of Common Planar Rigid-Body Contact Models
Nima Fazeli
Samuel Zapolsky
Evan Drumwright
Alberto Rodriguez
63
31
0
13 Oct 2017
Simple Recurrent Units for Highly Parallelizable Recurrence
Simple Recurrent Units for Highly Parallelizable Recurrence
Tao Lei
Yu Zhang
Sida I. Wang
Huijing Dai
Yoav Artzi
LRM
73
274
0
08 Sep 2017
Neural Network Dynamics for Model-Based Deep Reinforcement Learning with
  Model-Free Fine-Tuning
Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning
Anusha Nagabandi
G. Kahn
R. Fearing
Sergey Levine
91
973
0
08 Aug 2017
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
444
18,931
0
20 Jul 2017
Imagination-Augmented Agents for Deep Reinforcement Learning
Imagination-Augmented Agents for Deep Reinforcement Learning
T. Weber
S. Racanière
David P. Reichert
Lars Buesing
A. Guez
...
Razvan Pascanu
Peter W. Battaglia
Demis Hassabis
David Silver
Daan Wierstra
LM&Ro
85
556
0
19 Jul 2017
Learning model-based planning from scratch
Learning model-based planning from scratch
Razvan Pascanu
Yujia Li
Oriol Vinyals
N. Heess
Lars Buesing
S. Racanière
David P. Reichert
T. Weber
Daan Wierstra
Peter W. Battaglia
LM&Ro
99
98
0
19 Jul 2017
Value Prediction Network
Value Prediction Network
Junhyuk Oh
Satinder Singh
Honglak Lee
74
333
0
11 Jul 2017
Metacontrol for Adaptive Imagination-Based Optimization
Metacontrol for Adaptive Imagination-Based Optimization
Jessica B. Hamrick
A. J. Ballard
Razvan Pascanu
Oriol Vinyals
N. Heess
Peter W. Battaglia
62
69
0
07 May 2017
Neural Message Passing for Quantum Chemistry
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
480
7,431
0
04 Apr 2017
Experimental Validation of Contact Dynamics for In-Hand Manipulation
Experimental Validation of Contact Dynamics for In-Hand Manipulation
Roman Kolbert
Nikhil Chavan-Dafle
Alberto Rodriguez
30
28
0
06 Feb 2017
The Predictron: End-To-End Learning and Planning
The Predictron: End-To-End Learning and Planning
David Silver
H. V. Hasselt
Matteo Hessel
Tom Schaul
A. Guez
...
Gabriel Dulac-Arnold
David P. Reichert
Neil C. Rabinowitz
André Barreto
T. Degris
62
291
0
28 Dec 2016
A Compositional Object-Based Approach to Learning Physical Dynamics
A Compositional Object-Based Approach to Learning Physical Dynamics
Michael Chang
T. Ullman
Antonio Torralba
J. Tenenbaum
AI4CE
OCL
366
440
0
01 Dec 2016
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
508
1,407
0
01 Dec 2016
A Differentiable Physics Engine for Deep Learning in Robotics
A Differentiable Physics Engine for Deep Learning in Robotics
Jonas Degrave
Michiel Hermans
J. Dambre
Francis Wyffels
PINN
AI4CE
61
229
0
05 Nov 2016
Quasi-Recurrent Neural Networks
Quasi-Recurrent Neural Networks
James Bradbury
Stephen Merity
Caiming Xiong
R. Socher
128
441
0
05 Nov 2016
More than a Million Ways to Be Pushed: A High-Fidelity Experimental
  Dataset of Planar Pushing
More than a Million Ways to Be Pushed: A High-Fidelity Experimental Dataset of Planar Pushing
Kuan-Ting Yu
Maria Bauzá
Nima Fazeli
Alberto Rodriguez
47
181
0
14 Apr 2016
Continuous Deep Q-Learning with Model-based Acceleration
Continuous Deep Q-Learning with Model-based Acceleration
S. Gu
Timothy Lillicrap
Ilya Sutskever
Sergey Levine
86
1,012
0
02 Mar 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.9K
193,426
0
10 Dec 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.5K
149,842
0
22 Dec 2014
1