Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1808.09034
Cited By
Importance Weighting and Variational Inference
27 August 2018
Justin Domke
Daniel Sheldon
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Importance Weighting and Variational Inference"
34 / 34 papers shown
Title
Towards Model-Agnostic Posterior Approximation for Fast and Accurate Variational Autoencoders
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
DRL
34
0
0
13 Mar 2024
U-Statistics for Importance-Weighted Variational Inference
Javier Burroni
Kenta Takatsu
Justin Domke
Daniel Sheldon
18
1
0
27 Feb 2023
Explainability as statistical inference
Hugo Senetaire
Damien Garreau
J. Frellsen
Pierre-Alexandre Mattei
FAtt
29
4
0
06 Dec 2022
Alpha-divergence Variational Inference Meets Importance Weighted Auto-Encoders: Methodology and Asymptotics
Kamélia Daudel
Joe Benton
Yuyang Shi
Arnaud Doucet
DRL
21
8
0
12 Oct 2022
GFlowNets and variational inference
Nikolay Malkin
Salem Lahlou
T. Deleu
Xu Ji
J. E. Hu
Katie Everett
Dinghuai Zhang
Yoshua Bengio
BDL
138
78
0
02 Oct 2022
Optimization of Annealed Importance Sampling Hyperparameters
Shirin Goshtasbpour
Fernando Perez-Cruz
37
1
0
27 Sep 2022
Compound Density Networks for Risk Prediction using Electronic Health Records
Yuxi Liu
S. Qin
Zhenhao Zhang
Wei Shao
BDL
21
9
0
02 Aug 2022
Markov Chain Score Ascent: A Unifying Framework of Variational Inference with Markovian Gradients
Kyurae Kim
Jisu Oh
Jacob R. Gardner
Adji Bousso Dieng
Hongseok Kim
BDL
37
8
0
13 Jun 2022
Variational Inference with Locally Enhanced Bounds for Hierarchical Models
Tomas Geffner
Justin Domke
29
5
0
08 Mar 2022
Variational methods for simulation-based inference
Manuel Glöckler
Michael Deistler
Jakob H. Macke
32
47
0
08 Mar 2022
Multiple Importance Sampling ELBO and Deep Ensembles of Variational Approximations
Oskar Kviman
Harald Melin
Hazal Koptagel
Victor Elvira
J. Lagergren
DRL
75
17
0
22 Feb 2022
Surrogate Likelihoods for Variational Annealed Importance Sampling
M. Jankowiak
Du Phan
BDL
35
13
0
22 Dec 2021
Scalable Multi-Task Gaussian Processes with Neural Embedding of Coregionalization
Haitao Liu
Jiaqi Ding
Xinyu Xie
Xiaomo Jiang
Yusong Zhao
Xiaofang Wang
BDL
34
14
0
20 Sep 2021
MCMC Variational Inference via Uncorrected Hamiltonian Annealing
Tomas Geffner
Justin Domke
33
34
0
08 Jul 2021
Variational Refinement for Importance Sampling Using the Forward Kullback-Leibler Divergence
Ghassen Jerfel
S. Wang
Clara Fannjiang
Katherine A. Heller
Yi Ma
Michael I. Jordan
BDL
30
40
0
30 Jun 2021
Empirical Evaluation of Biased Methods for Alpha Divergence Minimization
Tomas Geffner
Justin Domke
30
9
0
13 May 2021
Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding
Yangjun Ruan
Karen Ullrich
Daniel de Souza Severo
James Townsend
Ashish Khisti
Arnaud Doucet
Alireza Makhzani
Chris J. Maddison
24
25
0
22 Feb 2021
Annealed Flow Transport Monte Carlo
Michael Arbel
A. G. Matthews
Arnaud Doucet
45
70
0
15 Feb 2021
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
42
49
0
27 Dec 2020
Evaluating Lossy Compression Rates of Deep Generative Models
Sicong Huang
Alireza Makhzani
Yanshuai Cao
Roger C. Grosse
EGVM
DRL
8
27
0
15 Aug 2020
Failure Modes of Variational Autoencoders and Their Effects on Downstream Tasks
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
CML
DRL
32
25
0
14 Jul 2020
Variational Inference with Continuously-Indexed Normalizing Flows
Anthony L. Caterini
R. Cornish
Dino Sejdinovic
Arnaud Doucet
BDL
26
19
0
10 Jul 2020
All in the Exponential Family: Bregman Duality in Thermodynamic Variational Inference
Rob Brekelmans
Vaden Masrani
Frank Wood
Greg Ver Steeg
Aram Galstyan
22
16
0
01 Jul 2020
not-MIWAE: Deep Generative Modelling with Missing not at Random Data
Niels Bruun Ipsen
Pierre-Alexandre Mattei
J. Frellsen
DRL
14
54
0
23 Jun 2020
Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and Optimization
Abhinav Agrawal
Daniel Sheldon
Justin Domke
TPM
BDL
19
38
0
18 Jun 2020
Bayesian Neural Network via Stochastic Gradient Descent
Abhinav Sagar
UQCV
BDL
18
2
0
04 Jun 2020
Variational Autoencoder with Embedded Student-
t
t
t
Mixture Model for Authorship Attribution
Benedikt T. Boenninghoff
Steffen Zeiler
R. M. Nickel
D. Kolossa
BDL
DRL
33
2
0
28 May 2020
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
42
94
0
02 Mar 2020
Learning Discrete Distributions by Dequantization
Emiel Hoogeboom
Taco S. Cohen
Jakub M. Tomczak
DRL
34
31
0
30 Jan 2020
Particle Smoothing Variational Objectives
A. Moretti
Zizhao Wang
Luhuan Wu
Iddo Drori
I. Pe’er
32
10
0
20 Sep 2019
Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation
Justin Domke
Daniel Sheldon
26
18
0
24 Jun 2019
Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems
Yibo Yang
P. Perdikaris
SyDa
BDL
AI4CE
29
55
0
15 Jan 2019
MIWAE: Deep Generative Modelling and Imputation of Incomplete Data
Pierre-Alexandre Mattei
J. Frellsen
SyDa
25
45
0
06 Dec 2018
Variational Inference via
χ
χ
χ
-Upper Bound Minimization
Adji Bousso Dieng
Dustin Tran
Rajesh Ranganath
John Paisley
David M. Blei
BDL
83
36
0
01 Nov 2016
1