ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.03856
  4. Cited By
Neural Importance Sampling

Neural Importance Sampling

11 August 2018
Thomas Müller
Brian McWilliams
Fabrice Rousselle
Markus Gross
Jan Novák
ArXivPDFHTML

Papers citing "Neural Importance Sampling"

30 / 80 papers shown
Title
Neural BRDFs: Representation and Operations
Neural BRDFs: Representation and Operations
Jiahui Fan
Beibei Wang
Miloš Hašan
Jian Yang
Ling-Qi Yan
AI4CE
32
6
0
06 Nov 2021
Generative Networks for Precision Enthusiasts
Generative Networks for Precision Enthusiasts
A. Butter
Theo Heimel
Sander Hummerich
Tobias Krebs
Tilman Plehn
Armand Rousselot
Sophia Vent
AI4CE
21
59
0
22 Oct 2021
Dynamic Diffuse Global Illumination Resampling
Dynamic Diffuse Global Illumination Resampling
Z. Majercik
Thomas Müller
A. Keller
Derek Nowrouzezahrai
M. McGuire
44
13
0
11 Aug 2021
Sparse Flows: Pruning Continuous-depth Models
Sparse Flows: Pruning Continuous-depth Models
Lucas Liebenwein
Ramin Hasani
Alexander Amini
Daniela Rus
26
16
0
24 Jun 2021
Real-time Neural Radiance Caching for Path Tracing
Real-time Neural Radiance Caching for Path Tracing
Thomas Müller
Fabrice Rousselle
Jan Novák
A. Keller
3DH
AI4CE
36
155
0
23 Jun 2021
Nested Variational Inference
Nested Variational Inference
Heiko Zimmermann
Hao Wu
Babak Esmaeili
Jan-Willem van de Meent
BDL
32
20
0
21 Jun 2021
Neural Radiosity
Neural Radiosity
Saeed Hadadan
Shuhong Chen
Matthias Zwicker
22
41
0
26 May 2021
Unbiased Monte Carlo Cluster Updates with Autoregressive Neural Networks
Unbiased Monte Carlo Cluster Updates with Autoregressive Neural Networks
Dian Wu
R. Rossi
Giuseppe Carleo
32
29
0
12 May 2021
Understanding Event-Generation Networks via Uncertainties
Understanding Event-Generation Networks via Uncertainties
Marco Bellagente
Manuel Haussmann
Michel Luchmann
Tilman Plehn
BDL
41
55
0
09 Apr 2021
Appearance-Driven Automatic 3D Model Simplification
Appearance-Driven Automatic 3D Model Simplification
J. Hasselgren
Jacob Munkberg
J. Lehtinen
M. Aittala
S. Laine
48
55
0
08 Apr 2021
NEO: Non Equilibrium Sampling on the Orbit of a Deterministic Transform
NEO: Non Equilibrium Sampling on the Orbit of a Deterministic Transform
Achille Thin
Yazid Janati
Sylvain Le Corff
Charles Ollion
Arnaud Doucet
Alain Durmus
Eric Moulines
C. Robert
35
7
0
17 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
48
485
0
08 Mar 2021
Jacobian Determinant of Normalizing Flows
Jacobian Determinant of Normalizing Flows
Huadong Liao
Jiawei He
DRL
19
7
0
12 Feb 2021
Variational Determinant Estimation with Spherical Normalizing Flows
Variational Determinant Estimation with Spherical Normalizing Flows
Simon Passenheim
Emiel Hoogeboom
BDL
31
1
0
24 Dec 2020
Convex Potential Flows: Universal Probability Distributions with Optimal
  Transport and Convex Optimization
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
119
96
0
10 Dec 2020
Invertible Neural BRDF for Object Inverse Rendering
Invertible Neural BRDF for Object Inverse Rendering
Zhe Chen
S. Nobuhara
Ko Nishino
BDL
AI4CE
40
26
0
10 Aug 2020
Longitudinal Variational Autoencoder
Longitudinal Variational Autoencoder
S. Ramchandran
Gleb Tikhonov
Kalle Kujanpää
Miika Koskinen
Harri Lähdesmäki
DRL
CML
BDL
14
36
0
17 Jun 2020
Solving high-dimensional Hamilton-Jacobi-Bellman PDEs using neural
  networks: perspectives from the theory of controlled diffusions and measures
  on path space
Solving high-dimensional Hamilton-Jacobi-Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space
Nikolas Nusken
Lorenz Richter
AI4CE
38
105
0
11 May 2020
VegasFlow: accelerating Monte Carlo simulation across multiple hardware
  platforms
VegasFlow: accelerating Monte Carlo simulation across multiple hardware platforms
Stefano Carrazza
J. Cruz-Martinez
9
25
0
28 Feb 2020
Stochastic Normalizing Flows
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
57
176
0
16 Feb 2020
Targeted free energy estimation via learned mappings
Targeted free energy estimation via learned mappings
Peter Wirnsberger
A. J. Ballard
George Papamakarios
Stuart Abercrombie
S. Racanière
Alexander Pritzel
Danilo Jimenez Rezende
Charles Blundell
27
86
0
12 Feb 2020
Normalizing Flows on Tori and Spheres
Normalizing Flows on Tori and Spheres
Danilo Jimenez Rezende
George Papamakarios
S. Racanière
M. S. Albergo
G. Kanwar
P. Shanahan
Kyle Cranmer
TPM
20
153
0
06 Feb 2020
i-flow: High-dimensional Integration and Sampling with Normalizing Flows
i-flow: High-dimensional Integration and Sampling with Normalizing Flows
Christina Gao
J. Isaacson
Claudius Krause
AI4CE
24
107
0
15 Jan 2020
Invertible Generative Modeling using Linear Rational Splines
Invertible Generative Modeling using Linear Rational Splines
H. M. Dolatabadi
S. Erfani
C. Leckie
34
65
0
15 Jan 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
67
1,635
0
05 Dec 2019
Stochastic Neural Network with Kronecker Flow
Stochastic Neural Network with Kronecker Flow
Chin-Wei Huang
Ahmed Touati
Pascal Vincent
Gintare Karolina Dziugaite
Alexandre Lacoste
Aaron Courville
BDL
27
8
0
10 Jun 2019
Neural Spline Flows
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
41
748
0
10 Jun 2019
Cubic-Spline Flows
Cubic-Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
TPM
53
57
0
05 Jun 2019
A RAD approach to deep mixture models
A RAD approach to deep mixture models
Laurent Dinh
Jascha Narain Sohl-Dickstein
Hugo Larochelle
Razvan Pascanu
22
45
0
18 Mar 2019
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
275
2,553
0
25 Jan 2016
Previous
12