ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.02876
  4. Cited By
Machine Learning in High Energy Physics Community White Paper

Machine Learning in High Energy Physics Community White Paper

8 July 2018
K. Albertsson
Piero Altoe
D. Anderson
John R. Anderson
Michael Andrews
Juan Pedro Araque Espinosa
A. Aurisano
L. Basara
A. Bevan
W. Bhimji
D. Bonacorsi
Bjorn Burkle
P. Calafiura
M. Campanelli
Louis Capps
F. Carminati
Stefano Carrazza
Yi-fan Chen
T. Childers
Yann Coadou
E. Coniavitis
Kyle Cranmer
C. David
D. Davis
Andrea De Simone
Javier Mauricio Duarte
M. Erdmann
J. Eschle
A. Farbin
Matthew Feickert
N. Castro
C. Fitzpatrick
M. Floris
A. Forti
J. Garra-Tico
J. Gemmler
M. Girone
P. Glaysher
S. Gleyzer
V. Gligorov
T. Golling
Jonas Graw
L. Gray
D. Greenwood
T. Hacker
J. Harvey
B. Hegner
Lukas Heinrich
Ulrich Heintz
B. Hooberman
J. Junggeburth
Michael Kagan
M. Kane
K. Kanishchev
P. Karpinski
Z. Kassabov
Gaurav Kaul
D. Kcira
Thomas Keck
A. Klimentov
J. Kowalkowski
L. Kreczko
A. Kurepin
R. Kutschke
Valentin Kuznetsov
Nicolas Köhler
I. Lakomov
K. Lannon
M. Lassnig
A. Limosani
Gilles Louppe
A. Mangu
P. Mato
N. Meenakshi
H. Meinhard
D. Menasce
L. Moneta
S. Moortgat
Mark S. Neubauer
H. Newman
Sydney Otten
Hans Pabst
Michela Paganini
M. Paulini
G. Perdue
Uzziel Perez
A. Picazio
J. Pivarski
Harrison B. Prosper
F. Psihas
A. Radovic
R. Reece
Aurelius Rinkevicius
E. Rodrigues
J. Rorie
D. Rousseau
A. Sauers
S. Schramm
A. Schwartzman
H. Severini
P. Seyfert
Filip Siroky
Konstantin Skazytkin
M. Sokoloff
G. Stewart
B. Stienen
I. Stockdale
G. Strong
Wei Sun
S. Thais
K. Tomko
E. Upfal
Emanuele Usai
Andrey Ustyuzhanin
M. Vala
Justin Vasel
S. Vallecorsa
M. Verzetti
X. Vilasís-Cardona
J. Vlimant
I. Vukotic
Sean Wang
G. Watts
Michael Williams
Wenjing Wu
Stefan Wunsch
Kun Yang
O. Zapata
    AI4CE
ArXivPDFHTML

Papers citing "Machine Learning in High Energy Physics Community White Paper"

22 / 22 papers shown
Title
Machine-Learning Analysis of Radiative Decays to Dark Matter at the LHC
Machine-Learning Analysis of Radiative Decays to Dark Matter at the LHC
E. Arganda
Marcela Carena
M. D. L. Rios
A. D. Perez
Duncan Rocha
Rosa María Sandá Seoane
Carlos E. M. Wagner
AI4CE
23
0
0
17 Oct 2024
Quantum Vision Transformers for Quark-Gluon Classification
Quantum Vision Transformers for Quark-Gluon Classification
Marçal Comajoan Cara
Gopal Ramesh Dahale
Zhongtian Dong
Roy T. Forestano
S. Gleyzer
...
Kyoungchul Kong
Tom Magorsch
Konstantin T. Matchev
Katia Matcheva
Eyup B. Unlu
45
9
0
16 May 2024
PASCL: Supervised Contrastive Learning with Perturbative Augmentation
  for Particle Decay Reconstruction
PASCL: Supervised Contrastive Learning with Perturbative Augmentation for Particle Decay Reconstruction
Junjian Lu
Siwei Liu
Dmitrii Kobylianski
Etienne Dreyer
Eilam Gross
Houcheng Su
32
3
0
18 Feb 2024
Deep Learning-Based Spatiotemporal Multi-Event Reconstruction for Delay
  Line Detectors
Deep Learning-Based Spatiotemporal Multi-Event Reconstruction for Delay Line Detectors
Marco Knipfer
S. Meier
J. Heimerl
P. Hommelhoff
S. Gleyzer
21
3
0
13 Jun 2023
Assessment of few-hits machine learning classification algorithms for
  low energy physics in liquid argon detectors
Assessment of few-hits machine learning classification algorithms for low energy physics in liquid argon detectors
R. Moretti
Michele Grossi
M. Biassoni
Andrea Giachero
Marco Rossi
D. Guffanti
Danilo Labranca
F. Terranova
S. Vallecorsa
24
4
0
16 May 2023
Unravelling physics beyond the standard model with classical and quantum
  anomaly detection
Unravelling physics beyond the standard model with classical and quantum anomaly detection
Julian Schuhmacher
Laura Boggia
Vasilis Belis
E. Puljak
Michele Grossi
M. Pierini
S. Vallecorsa
F. Tacchino
Panagiotis Kl Barkoutsos
I. Tavernelli
16
26
0
25 Jan 2023
Artificial intelligence for improved fitting of trajectories of
  elementary particles in inhomogeneous dense materials immersed in a magnetic
  field
Artificial intelligence for improved fitting of trajectories of elementary particles in inhomogeneous dense materials immersed in a magnetic field
Saúl Alonso-Monsalve
D. Sgalaberna
Xingyu Zhao
C. Mcgrew
A. Rubbia
19
4
0
09 Nov 2022
Machine-Learned Exclusion Limits without Binning
Machine-Learned Exclusion Limits without Binning
E. Arganda
Andrés D. Pérez
M. D. L. Rios
Rosa María Sandá Seoane
30
9
0
09 Nov 2022
Data Science and Machine Learning in Education
Data Science and Machine Learning in Education
G. Benelli
Thomas Y. Chen
Javier Mauricio Duarte
Matthew Feickert
Matthew Graham
...
K. Terao
S. Thais
A. Roy
J. Vlimant
G. Chachamis
AI4CE
26
5
0
19 Jul 2022
SYMBA: Symbolic Computation of Squared Amplitudes in High Energy Physics
  with Machine Learning
SYMBA: Symbolic Computation of Squared Amplitudes in High Energy Physics with Machine Learning
Abdulhakim Alnuqaydan
S. Gleyzer
Harrison B. Prosper
18
14
0
17 Jun 2022
End-to-end multi-particle reconstruction in high occupancy imaging
  calorimeters with graph neural networks
End-to-end multi-particle reconstruction in high occupancy imaging calorimeters with graph neural networks
S. Qasim
N. Chernyavskaya
J. Kieseler
K. Long
O. Viazlo
M. Pierini
R. Nawaz
21
23
0
04 Apr 2022
A Cautionary Tale of Decorrelating Theory Uncertainties
A Cautionary Tale of Decorrelating Theory Uncertainties
A. Ghosh
Benjamin Nachman
30
17
0
16 Sep 2021
Beyond Cuts in Small Signal Scenarios -- Enhanced Sneutrino
  Detectability Using Machine Learning
Beyond Cuts in Small Signal Scenarios -- Enhanced Sneutrino Detectability Using Machine Learning
Daniel Alvestad
N. Fomin
Jörn Kersten
S. Maeland
Inga Strümke
18
11
0
06 Aug 2021
Towards a method to anticipate dark matter signals with deep learning at
  the LHC
Towards a method to anticipate dark matter signals with deep learning at the LHC
E. Arganda
A. Medina
A. D. Perez
A. Szynkman
17
7
0
25 May 2021
A reconfigurable neural network ASIC for detector front-end data
  compression at the HL-LHC
A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC
G. D. Guglielmo
F. Fahim
C. Herwig
M. Valentín
Javier Mauricio Duarte
...
D. Noonan
Seda Ogrenci-Memik
M. Pierini
S. Summers
N. Tran
13
50
0
04 May 2021
Autoencoders for unsupervised anomaly detection in high energy physics
Autoencoders for unsupervised anomaly detection in high energy physics
Thorben Finke
Michael Krämer
A. Morandini
A. Mück
I. Oleksiyuk
18
83
0
19 Apr 2021
Graph Generative Models for Fast Detector Simulations in High Energy
  Physics
Graph Generative Models for Fast Detector Simulations in High Energy Physics
A. Hariri
Darya Dyachkova
Sergei Gleyzer
AI4CE
24
6
0
05 Apr 2021
Development of a Vertex Finding Algorithm using Recurrent Neural Network
Development of a Vertex Finding Algorithm using Recurrent Neural Network
Kiichi Goto
T. Suehara
T. Yoshioka
M. Kurata
Hajime Nagahara
Yuta Nakashima
Noriko Takemura
M. Iwasaki
8
9
0
28 Jan 2021
E Pluribus Unum Ex Machina: Learning from Many Collider Events at Once
E Pluribus Unum Ex Machina: Learning from Many Collider Events at Once
Benjamin Nachman
Jesse Thaler
35
33
0
18 Jan 2021
Machine learning for complete intersection Calabi-Yau manifolds: a
  methodological study
Machine learning for complete intersection Calabi-Yau manifolds: a methodological study
Harold Erbin
Riccardo Finotello
21
31
0
30 Jul 2020
Energy Flow Networks: Deep Sets for Particle Jets
Energy Flow Networks: Deep Sets for Particle Jets
Patrick T. Komiske
E. Metodiev
Jesse Thaler
PINN
3DPC
24
251
0
11 Oct 2018
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1