54
6
v1v2 (latest)

Graph Generative Models for Fast Detector Simulations in High Energy Physics

Abstract

Accurate and fast simulation of particle physics processes is crucial for the high-energy physics community. Simulating particle interactions with detectors is both time consuming and computationally expensive. With the proton-proton collision energy of 13 TeV, the Large Hadron Collider is uniquely positioned to detect and measure the rare phenomena that can shape our knowledge of new interactions. The High-Luminosity Large Hadron Collider (HL-LHC) upgrade will put a significant strain on the computing infrastructure due to increased event rate and levels of pile-up. Simulation of high-energy physics collisions needs to be significantly faster without sacrificing the physics accuracy. Machine learning approaches can offer faster solutions, while maintaining a high level of fidelity. We discuss a graph generative model that provides effective reconstruction of LHC events, paving the way for full detector level fast simulation for HL-LHC.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.