Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1807.01750
Cited By
Understanding and Accelerating Particle-Based Variational Inference
4 July 2018
Chang-rui Liu
Jingwei Zhuo
Pengyu Cheng
Ruiyi Zhang
Jun Zhu
Lawrence Carin
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding and Accelerating Particle-Based Variational Inference"
24 / 24 papers shown
Title
Scalable Thompson Sampling via Optimal Transport
Ruiyi Zhang
Zheng Wen
Changyou Chen
Lawrence Carin
OT
55
20
0
19 Feb 2019
Policy Optimization as Wasserstein Gradient Flows
Ruiyi Zhang
Changyou Chen
Chunyuan Li
Lawrence Carin
52
68
0
09 Aug 2018
A Stein variational Newton method
Gianluca Detommaso
Tiangang Cui
Alessio Spantini
Youssef Marzouk
Robert Scheichl
90
117
0
08 Jun 2018
A Spectral Approach to Gradient Estimation for Implicit Distributions
Jiaxin Shi
Shengyang Sun
Jun Zhu
54
91
0
07 Jun 2018
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
Changyou Chen
Ruiyi Zhang
Wenlin Wang
Bai Li
Liqun Chen
47
89
0
29 May 2018
Bayesian posterior approximation via greedy particle optimization
Futoshi Futami
Zhenghang Cui
Issei Sato
Masashi Sugiyama
62
22
0
21 May 2018
Stein Points
W. Chen
Lester W. Mackey
Jackson Gorham
François‐Xavier Briol
Chris J. Oates
58
102
0
27 Mar 2018
A Fast Proximal Point Method for Computing Exact Wasserstein Distance
Yujia Xie
Xiangfeng Wang
Ruijia Wang
H. Zha
42
18
0
12 Feb 2018
Riemannian Stein Variational Gradient Descent for Bayesian Inference
Chang-rui Liu
Jun Zhu
55
67
0
30 Nov 2017
Particle Optimization in Stochastic Gradient MCMC
Changyou Chen
Ruiyi Zhang
34
10
0
29 Nov 2017
Message Passing Stein Variational Gradient Descent
Jingwei Zhuo
Chang-rui Liu
Jiaxin Shi
Jun Zhu
Ning Chen
Bo Zhang
54
92
0
13 Nov 2017
Gradient Estimators for Implicit Models
Yingzhen Li
Richard Turner
97
108
0
19 May 2017
Stein Variational Gradient Descent as Gradient Flow
Qiang Liu
OT
66
275
0
25 Apr 2017
Stein Variational Policy Gradient
Yang Liu
Prajit Ramachandran
Qiang Liu
Jian-wei Peng
60
139
0
07 Apr 2017
Reinforcement Learning with Deep Energy-Based Policies
Tuomas Haarnoja
Haoran Tang
Pieter Abbeel
Sergey Levine
83
1,339
0
27 Feb 2017
Learning to Draw Samples: With Application to Amortized MLE for Generative Adversarial Learning
Dilin Wang
Qiang Liu
GAN
BDL
112
120
0
06 Nov 2016
On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators
Changyou Chen
Nan Ding
Lawrence Carin
66
161
0
21 Oct 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
63
1,091
0
16 Aug 2016
Riemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds
Hongyi Zhang
Sashank J. Reddi
S. Sra
85
240
0
23 May 2016
A Variational Perspective on Accelerated Methods in Optimization
Andre Wibisono
Ashia Wilson
Michael I. Jordan
85
572
0
14 Mar 2016
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
286
4,167
0
21 May 2015
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
180
4,251
0
04 Jun 2013
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
232
2,619
0
29 Jun 2012
MCMC using Hamiltonian dynamics
Radford M. Neal
288
3,276
0
09 Jun 2012
1