Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1807.01695
Cited By
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator
4 July 2018
Cong Fang
C. J. Li
Zhouchen Lin
Tong Zhang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator"
50 / 109 papers shown
Title
Multi-block-Single-probe Variance Reduced Estimator for Coupled Compositional Optimization
Wei Jiang
Gang Li
Yibo Wang
Lijun Zhang
Tianbao Yang
35
16
0
18 Jul 2022
SPIRAL: A superlinearly convergent incremental proximal algorithm for nonconvex finite sum minimization
Pourya Behmandpoor
P. Latafat
Andreas Themelis
Marc Moonen
Panagiotis Patrinos
29
2
0
17 Jul 2022
Quantum Neural Network Compression
Zhirui Hu
Peiyan Dong
Zhepeng Wang
Youzuo Lin
Yanzhi Wang
Weiwen Jiang
GNN
27
28
0
04 Jul 2022
On the Convergence of Momentum-Based Algorithms for Federated Bilevel Optimization Problems
Hongchang Gao
FedML
28
1
0
28 Apr 2022
AUC Maximization in the Era of Big Data and AI: A Survey
Tianbao Yang
Yiming Ying
38
179
0
28 Mar 2022
Tackling benign nonconvexity with smoothing and stochastic gradients
Harsh Vardhan
Sebastian U. Stich
28
8
0
18 Feb 2022
Optimal Algorithms for Stochastic Multi-Level Compositional Optimization
Wei Jiang
Bokun Wang
Yibo Wang
Lijun Zhang
Tianbao Yang
79
17
0
15 Feb 2022
Decentralized Stochastic Variance Reduced Extragradient Method
Luo Luo
Haishan Ye
27
7
0
01 Feb 2022
L-SVRG and L-Katyusha with Adaptive Sampling
Boxin Zhao
Boxiang Lyu
Mladen Kolar
21
3
0
31 Jan 2022
A Novel Convergence Analysis for Algorithms of the Adam Family
Zhishuai Guo
Yi Tian Xu
W. Yin
R. L. Jin
Tianbao Yang
39
47
0
07 Dec 2021
Escape saddle points by a simple gradient-descent based algorithm
Chenyi Zhang
Tongyang Li
ODL
31
15
0
28 Nov 2021
Random-reshuffled SARAH does not need a full gradient computations
Aleksandr Beznosikov
Martin Takáč
26
7
0
26 Nov 2021
Federated Expectation Maximization with heterogeneity mitigation and variance reduction
Aymeric Dieuleveut
G. Fort
Eric Moulines
Geneviève Robin
FedML
31
5
0
03 Nov 2021
Faster Perturbed Stochastic Gradient Methods for Finding Local Minima
Zixiang Chen
Dongruo Zhou
Quanquan Gu
40
1
0
25 Oct 2021
On Improving Model-Free Algorithms for Decentralized Multi-Agent Reinforcement Learning
Weichao Mao
Lin F. Yang
Kaipeng Zhang
Tamer Bacsar
39
57
0
12 Oct 2021
The Number of Steps Needed for Nonconvex Optimization of a Deep Learning Optimizer is a Rational Function of Batch Size
Hideaki Iiduka
26
1
0
26 Aug 2021
Enhanced Bilevel Optimization via Bregman Distance
Feihu Huang
Junyi Li
Shangqian Gao
Heng-Chiao Huang
27
33
0
26 Jul 2021
A general sample complexity analysis of vanilla policy gradient
Rui Yuan
Robert Mansel Gower
A. Lazaric
79
62
0
23 Jul 2021
Proxy Convexity: A Unified Framework for the Analysis of Neural Networks Trained by Gradient Descent
Spencer Frei
Quanquan Gu
26
25
0
25 Jun 2021
Provably Faster Algorithms for Bilevel Optimization
Junjie Yang
Kaiyi Ji
Yingbin Liang
49
132
0
08 Jun 2021
Escaping Saddle Points with Compressed SGD
Dmitrii Avdiukhin
G. Yaroslavtsev
19
4
0
21 May 2021
Complexity Lower Bounds for Nonconvex-Strongly-Concave Min-Max Optimization
Haochuan Li
Yi Tian
Jingzhao Zhang
Ali Jadbabaie
24
40
0
18 Apr 2021
Greedy-GQ with Variance Reduction: Finite-time Analysis and Improved Complexity
Shaocong Ma
Ziyi Chen
Yi Zhou
Shaofeng Zou
17
11
0
30 Mar 2021
The Complexity of Nonconvex-Strongly-Concave Minimax Optimization
Siqi Zhang
Junchi Yang
Cristóbal Guzmán
Negar Kiyavash
Niao He
33
61
0
29 Mar 2021
ANITA: An Optimal Loopless Accelerated Variance-Reduced Gradient Method
Zhize Li
43
14
0
21 Mar 2021
Private Stochastic Convex Optimization: Optimal Rates in
ℓ
1
\ell_1
ℓ
1
Geometry
Hilal Asi
Vitaly Feldman
Tomer Koren
Kunal Talwar
17
91
0
02 Mar 2021
Non-Euclidean Differentially Private Stochastic Convex Optimization: Optimal Rates in Linear Time
Raef Bassily
Cristóbal Guzmán
Anupama Nandi
54
66
0
01 Mar 2021
MARINA: Faster Non-Convex Distributed Learning with Compression
Eduard A. Gorbunov
Konstantin Burlachenko
Zhize Li
Peter Richtárik
39
109
0
15 Feb 2021
Exploring Deep Neural Networks via Layer-Peeled Model: Minority Collapse in Imbalanced Training
Cong Fang
Hangfeng He
Qi Long
Weijie J. Su
FAtt
130
167
0
29 Jan 2021
Efficient Semi-Implicit Variational Inference
Vincent Moens
Hang Ren
A. Maraval
Rasul Tutunov
Jun Wang
H. Ammar
85
6
0
15 Jan 2021
Faster Non-Convex Federated Learning via Global and Local Momentum
Rudrajit Das
Anish Acharya
Abolfazl Hashemi
Sujay Sanghavi
Inderjit S. Dhillon
Ufuk Topcu
FedML
37
82
0
07 Dec 2020
A Stochastic Path-Integrated Differential EstimatoR Expectation Maximization Algorithm
G. Fort
Eric Moulines
Hoi-To Wai
TPM
14
7
0
30 Nov 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
34
0
0
26 Aug 2020
PAGE: A Simple and Optimal Probabilistic Gradient Estimator for Nonconvex Optimization
Zhize Li
Hongyan Bao
Xiangliang Zhang
Peter Richtárik
ODL
31
126
0
25 Aug 2020
Solving Stochastic Compositional Optimization is Nearly as Easy as Solving Stochastic Optimization
Tianyi Chen
Yuejiao Sun
W. Yin
48
81
0
25 Aug 2020
Privacy-Preserving Asynchronous Federated Learning Algorithms for Multi-Party Vertically Collaborative Learning
Bin Gu
An Xu
Zhouyuan Huo
Cheng Deng
Heng-Chiao Huang
FedML
38
27
0
14 Aug 2020
Second-Order Information in Non-Convex Stochastic Optimization: Power and Limitations
Yossi Arjevani
Y. Carmon
John C. Duchi
Dylan J. Foster
Ayush Sekhari
Karthik Sridharan
84
53
0
24 Jun 2020
An Online Method for A Class of Distributionally Robust Optimization with Non-Convex Objectives
Qi Qi
Zhishuai Guo
Yi Tian Xu
R. L. Jin
Tianbao Yang
33
44
0
17 Jun 2020
Optimal Complexity in Decentralized Training
Yucheng Lu
Christopher De Sa
38
72
0
15 Jun 2020
An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias
Lu Yu
Krishnakumar Balasubramanian
S. Volgushev
Murat A. Erdogdu
35
50
0
14 Jun 2020
Biased Stochastic First-Order Methods for Conditional Stochastic Optimization and Applications in Meta Learning
Yifan Hu
Siqi Zhang
Xin Chen
Niao He
ODL
41
55
0
25 Feb 2020
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization
Samuel Horváth
Lihua Lei
Peter Richtárik
Michael I. Jordan
57
30
0
13 Feb 2020
Variance Reduced Coordinate Descent with Acceleration: New Method With a Surprising Application to Finite-Sum Problems
Filip Hanzely
D. Kovalev
Peter Richtárik
35
17
0
11 Feb 2020
Momentum Improves Normalized SGD
Ashok Cutkosky
Harsh Mehta
ODL
10
118
0
09 Feb 2020
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
22
168
0
19 Dec 2019
History-Gradient Aided Batch Size Adaptation for Variance Reduced Algorithms
Kaiyi Ji
Zhe Wang
Bowen Weng
Yi Zhou
Wei Zhang
Yingbin Liang
ODL
18
5
0
21 Oct 2019
Sample Efficient Policy Gradient Methods with Recursive Variance Reduction
Pan Xu
F. Gao
Quanquan Gu
28
83
0
18 Sep 2019
Second-Order Guarantees of Stochastic Gradient Descent in Non-Convex Optimization
Stefan Vlaski
Ali H. Sayed
ODL
26
21
0
19 Aug 2019
Stochastic First-order Methods for Convex and Nonconvex Functional Constrained Optimization
Digvijay Boob
Qi Deng
Guanghui Lan
44
93
0
07 Aug 2019
Distributed Learning in Non-Convex Environments -- Part II: Polynomial Escape from Saddle-Points
Stefan Vlaski
Ali H. Sayed
21
53
0
03 Jul 2019
Previous
1
2
3
Next