ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.01695
  4. Cited By
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path
  Integrated Differential Estimator

SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator

4 July 2018
Cong Fang
C. J. Li
Zhouchen Lin
Tong Zhang
ArXivPDFHTML

Papers citing "SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator"

50 / 109 papers shown
Title
Multi-block-Single-probe Variance Reduced Estimator for Coupled
  Compositional Optimization
Multi-block-Single-probe Variance Reduced Estimator for Coupled Compositional Optimization
Wei Jiang
Gang Li
Yibo Wang
Lijun Zhang
Tianbao Yang
35
16
0
18 Jul 2022
SPIRAL: A superlinearly convergent incremental proximal algorithm for
  nonconvex finite sum minimization
SPIRAL: A superlinearly convergent incremental proximal algorithm for nonconvex finite sum minimization
Pourya Behmandpoor
P. Latafat
Andreas Themelis
Marc Moonen
Panagiotis Patrinos
29
2
0
17 Jul 2022
Quantum Neural Network Compression
Quantum Neural Network Compression
Zhirui Hu
Peiyan Dong
Zhepeng Wang
Youzuo Lin
Yanzhi Wang
Weiwen Jiang
GNN
27
28
0
04 Jul 2022
On the Convergence of Momentum-Based Algorithms for Federated Bilevel
  Optimization Problems
On the Convergence of Momentum-Based Algorithms for Federated Bilevel Optimization Problems
Hongchang Gao
FedML
28
1
0
28 Apr 2022
AUC Maximization in the Era of Big Data and AI: A Survey
AUC Maximization in the Era of Big Data and AI: A Survey
Tianbao Yang
Yiming Ying
38
179
0
28 Mar 2022
Tackling benign nonconvexity with smoothing and stochastic gradients
Tackling benign nonconvexity with smoothing and stochastic gradients
Harsh Vardhan
Sebastian U. Stich
28
8
0
18 Feb 2022
Optimal Algorithms for Stochastic Multi-Level Compositional Optimization
Optimal Algorithms for Stochastic Multi-Level Compositional Optimization
Wei Jiang
Bokun Wang
Yibo Wang
Lijun Zhang
Tianbao Yang
79
17
0
15 Feb 2022
Decentralized Stochastic Variance Reduced Extragradient Method
Decentralized Stochastic Variance Reduced Extragradient Method
Luo Luo
Haishan Ye
27
7
0
01 Feb 2022
L-SVRG and L-Katyusha with Adaptive Sampling
L-SVRG and L-Katyusha with Adaptive Sampling
Boxin Zhao
Boxiang Lyu
Mladen Kolar
21
3
0
31 Jan 2022
A Novel Convergence Analysis for Algorithms of the Adam Family
A Novel Convergence Analysis for Algorithms of the Adam Family
Zhishuai Guo
Yi Tian Xu
W. Yin
R. L. Jin
Tianbao Yang
39
47
0
07 Dec 2021
Escape saddle points by a simple gradient-descent based algorithm
Escape saddle points by a simple gradient-descent based algorithm
Chenyi Zhang
Tongyang Li
ODL
31
15
0
28 Nov 2021
Random-reshuffled SARAH does not need a full gradient computations
Random-reshuffled SARAH does not need a full gradient computations
Aleksandr Beznosikov
Martin Takáč
26
7
0
26 Nov 2021
Federated Expectation Maximization with heterogeneity mitigation and
  variance reduction
Federated Expectation Maximization with heterogeneity mitigation and variance reduction
Aymeric Dieuleveut
G. Fort
Eric Moulines
Geneviève Robin
FedML
31
5
0
03 Nov 2021
Faster Perturbed Stochastic Gradient Methods for Finding Local Minima
Faster Perturbed Stochastic Gradient Methods for Finding Local Minima
Zixiang Chen
Dongruo Zhou
Quanquan Gu
40
1
0
25 Oct 2021
On Improving Model-Free Algorithms for Decentralized Multi-Agent
  Reinforcement Learning
On Improving Model-Free Algorithms for Decentralized Multi-Agent Reinforcement Learning
Weichao Mao
Lin F. Yang
Kaipeng Zhang
Tamer Bacsar
39
57
0
12 Oct 2021
The Number of Steps Needed for Nonconvex Optimization of a Deep Learning
  Optimizer is a Rational Function of Batch Size
The Number of Steps Needed for Nonconvex Optimization of a Deep Learning Optimizer is a Rational Function of Batch Size
Hideaki Iiduka
26
1
0
26 Aug 2021
Enhanced Bilevel Optimization via Bregman Distance
Enhanced Bilevel Optimization via Bregman Distance
Feihu Huang
Junyi Li
Shangqian Gao
Heng-Chiao Huang
27
33
0
26 Jul 2021
A general sample complexity analysis of vanilla policy gradient
A general sample complexity analysis of vanilla policy gradient
Rui Yuan
Robert Mansel Gower
A. Lazaric
79
62
0
23 Jul 2021
Proxy Convexity: A Unified Framework for the Analysis of Neural Networks
  Trained by Gradient Descent
Proxy Convexity: A Unified Framework for the Analysis of Neural Networks Trained by Gradient Descent
Spencer Frei
Quanquan Gu
26
25
0
25 Jun 2021
Provably Faster Algorithms for Bilevel Optimization
Provably Faster Algorithms for Bilevel Optimization
Junjie Yang
Kaiyi Ji
Yingbin Liang
49
132
0
08 Jun 2021
Escaping Saddle Points with Compressed SGD
Escaping Saddle Points with Compressed SGD
Dmitrii Avdiukhin
G. Yaroslavtsev
19
4
0
21 May 2021
Complexity Lower Bounds for Nonconvex-Strongly-Concave Min-Max
  Optimization
Complexity Lower Bounds for Nonconvex-Strongly-Concave Min-Max Optimization
Haochuan Li
Yi Tian
Jingzhao Zhang
Ali Jadbabaie
24
40
0
18 Apr 2021
Greedy-GQ with Variance Reduction: Finite-time Analysis and Improved
  Complexity
Greedy-GQ with Variance Reduction: Finite-time Analysis and Improved Complexity
Shaocong Ma
Ziyi Chen
Yi Zhou
Shaofeng Zou
17
11
0
30 Mar 2021
The Complexity of Nonconvex-Strongly-Concave Minimax Optimization
The Complexity of Nonconvex-Strongly-Concave Minimax Optimization
Siqi Zhang
Junchi Yang
Cristóbal Guzmán
Negar Kiyavash
Niao He
33
61
0
29 Mar 2021
ANITA: An Optimal Loopless Accelerated Variance-Reduced Gradient Method
ANITA: An Optimal Loopless Accelerated Variance-Reduced Gradient Method
Zhize Li
43
14
0
21 Mar 2021
Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
  Geometry
Private Stochastic Convex Optimization: Optimal Rates in ℓ1\ell_1ℓ1​ Geometry
Hilal Asi
Vitaly Feldman
Tomer Koren
Kunal Talwar
17
91
0
02 Mar 2021
Non-Euclidean Differentially Private Stochastic Convex Optimization:
  Optimal Rates in Linear Time
Non-Euclidean Differentially Private Stochastic Convex Optimization: Optimal Rates in Linear Time
Raef Bassily
Cristóbal Guzmán
Anupama Nandi
54
66
0
01 Mar 2021
MARINA: Faster Non-Convex Distributed Learning with Compression
MARINA: Faster Non-Convex Distributed Learning with Compression
Eduard A. Gorbunov
Konstantin Burlachenko
Zhize Li
Peter Richtárik
39
109
0
15 Feb 2021
Exploring Deep Neural Networks via Layer-Peeled Model: Minority Collapse
  in Imbalanced Training
Exploring Deep Neural Networks via Layer-Peeled Model: Minority Collapse in Imbalanced Training
Cong Fang
Hangfeng He
Qi Long
Weijie J. Su
FAtt
130
167
0
29 Jan 2021
Efficient Semi-Implicit Variational Inference
Efficient Semi-Implicit Variational Inference
Vincent Moens
Hang Ren
A. Maraval
Rasul Tutunov
Jun Wang
H. Ammar
85
6
0
15 Jan 2021
Faster Non-Convex Federated Learning via Global and Local Momentum
Faster Non-Convex Federated Learning via Global and Local Momentum
Rudrajit Das
Anish Acharya
Abolfazl Hashemi
Sujay Sanghavi
Inderjit S. Dhillon
Ufuk Topcu
FedML
37
82
0
07 Dec 2020
A Stochastic Path-Integrated Differential EstimatoR Expectation
  Maximization Algorithm
A Stochastic Path-Integrated Differential EstimatoR Expectation Maximization Algorithm
G. Fort
Eric Moulines
Hoi-To Wai
TPM
14
7
0
30 Nov 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for
  Data and Parameters
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
34
0
0
26 Aug 2020
PAGE: A Simple and Optimal Probabilistic Gradient Estimator for
  Nonconvex Optimization
PAGE: A Simple and Optimal Probabilistic Gradient Estimator for Nonconvex Optimization
Zhize Li
Hongyan Bao
Xiangliang Zhang
Peter Richtárik
ODL
31
126
0
25 Aug 2020
Solving Stochastic Compositional Optimization is Nearly as Easy as
  Solving Stochastic Optimization
Solving Stochastic Compositional Optimization is Nearly as Easy as Solving Stochastic Optimization
Tianyi Chen
Yuejiao Sun
W. Yin
48
81
0
25 Aug 2020
Privacy-Preserving Asynchronous Federated Learning Algorithms for
  Multi-Party Vertically Collaborative Learning
Privacy-Preserving Asynchronous Federated Learning Algorithms for Multi-Party Vertically Collaborative Learning
Bin Gu
An Xu
Zhouyuan Huo
Cheng Deng
Heng-Chiao Huang
FedML
38
27
0
14 Aug 2020
Second-Order Information in Non-Convex Stochastic Optimization: Power
  and Limitations
Second-Order Information in Non-Convex Stochastic Optimization: Power and Limitations
Yossi Arjevani
Y. Carmon
John C. Duchi
Dylan J. Foster
Ayush Sekhari
Karthik Sridharan
84
53
0
24 Jun 2020
An Online Method for A Class of Distributionally Robust Optimization
  with Non-Convex Objectives
An Online Method for A Class of Distributionally Robust Optimization with Non-Convex Objectives
Qi Qi
Zhishuai Guo
Yi Tian Xu
R. L. Jin
Tianbao Yang
33
44
0
17 Jun 2020
Optimal Complexity in Decentralized Training
Optimal Complexity in Decentralized Training
Yucheng Lu
Christopher De Sa
38
72
0
15 Jun 2020
An Analysis of Constant Step Size SGD in the Non-convex Regime:
  Asymptotic Normality and Bias
An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias
Lu Yu
Krishnakumar Balasubramanian
S. Volgushev
Murat A. Erdogdu
35
50
0
14 Jun 2020
Biased Stochastic First-Order Methods for Conditional Stochastic
  Optimization and Applications in Meta Learning
Biased Stochastic First-Order Methods for Conditional Stochastic Optimization and Applications in Meta Learning
Yifan Hu
Siqi Zhang
Xin Chen
Niao He
ODL
41
55
0
25 Feb 2020
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization
Samuel Horváth
Lihua Lei
Peter Richtárik
Michael I. Jordan
57
30
0
13 Feb 2020
Variance Reduced Coordinate Descent with Acceleration: New Method With a
  Surprising Application to Finite-Sum Problems
Variance Reduced Coordinate Descent with Acceleration: New Method With a Surprising Application to Finite-Sum Problems
Filip Hanzely
D. Kovalev
Peter Richtárik
35
17
0
11 Feb 2020
Momentum Improves Normalized SGD
Momentum Improves Normalized SGD
Ashok Cutkosky
Harsh Mehta
ODL
10
118
0
09 Feb 2020
Optimization for deep learning: theory and algorithms
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
22
168
0
19 Dec 2019
History-Gradient Aided Batch Size Adaptation for Variance Reduced
  Algorithms
History-Gradient Aided Batch Size Adaptation for Variance Reduced Algorithms
Kaiyi Ji
Zhe Wang
Bowen Weng
Yi Zhou
Wei Zhang
Yingbin Liang
ODL
18
5
0
21 Oct 2019
Sample Efficient Policy Gradient Methods with Recursive Variance
  Reduction
Sample Efficient Policy Gradient Methods with Recursive Variance Reduction
Pan Xu
F. Gao
Quanquan Gu
28
83
0
18 Sep 2019
Second-Order Guarantees of Stochastic Gradient Descent in Non-Convex
  Optimization
Second-Order Guarantees of Stochastic Gradient Descent in Non-Convex Optimization
Stefan Vlaski
Ali H. Sayed
ODL
26
21
0
19 Aug 2019
Stochastic First-order Methods for Convex and Nonconvex Functional
  Constrained Optimization
Stochastic First-order Methods for Convex and Nonconvex Functional Constrained Optimization
Digvijay Boob
Qi Deng
Guanghui Lan
44
93
0
07 Aug 2019
Distributed Learning in Non-Convex Environments -- Part II: Polynomial
  Escape from Saddle-Points
Distributed Learning in Non-Convex Environments -- Part II: Polynomial Escape from Saddle-Points
Stefan Vlaski
Ali H. Sayed
21
53
0
03 Jul 2019
Previous
123
Next