Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1807.01695
Cited By
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator
4 July 2018
Cong Fang
C. J. Li
Zhouchen Lin
Tong Zhang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator"
50 / 105 papers shown
Title
Variance Reduction Methods Do Not Need to Compute Full Gradients: Improved Efficiency through Shuffling
Daniil Medyakov
Gleb Molodtsov
S. Chezhegov
Alexey Rebrikov
Aleksandr Beznosikov
103
0
0
21 Feb 2025
A single-loop SPIDER-type stochastic subgradient method for expectation-constrained nonconvex nonsmooth optimization
Wei Liu
Yangyang Xu
71
3
0
31 Jan 2025
Adaptive Batch Size for Privately Finding Second-Order Stationary Points
Daogao Liu
Kunal Talwar
135
0
0
10 Oct 2024
Extended convexity and smoothness and their applications in deep learning
Binchuan Qi
Wei Gong
Li Li
61
0
0
08 Oct 2024
Obtaining Lower Query Complexities through Lightweight Zeroth-Order Proximal Gradient Algorithms
Bin Gu
Xiyuan Wei
Hualin Zhang
Yi Chang
Heng-Chiao Huang
FedML
23
0
0
03 Oct 2024
An Accelerated Algorithm for Stochastic Bilevel Optimization under Unbounded Smoothness
Xiaochuan Gong
Jie Hao
Mingrui Liu
46
2
0
28 Sep 2024
Gradient-Free Method for Heavily Constrained Nonconvex Optimization
Wanli Shi
Hongchang Gao
Bin Gu
21
5
0
31 Aug 2024
Private Zeroth-Order Nonsmooth Nonconvex Optimization
Qinzi Zhang
Hoang Tran
Ashok Cutkosky
40
4
0
27 Jun 2024
Comparisons Are All You Need for Optimizing Smooth Functions
Chenyi Zhang
Tongyang Li
AAML
37
1
0
19 May 2024
Robust Decentralized Learning with Local Updates and Gradient Tracking
Sajjad Ghiasvand
Amirhossein Reisizadeh
Mahnoosh Alizadeh
Ramtin Pedarsani
42
3
0
02 May 2024
Stochastic Halpern iteration in normed spaces and applications to reinforcement learning
Mario Bravo
Juan Pablo Contreras
45
3
0
19 Mar 2024
Non-Convex Stochastic Composite Optimization with Polyak Momentum
Yuan Gao
Anton Rodomanov
Sebastian U. Stich
37
6
0
05 Mar 2024
Probabilistic Guarantees of Stochastic Recursive Gradient in Non-Convex Finite Sum Problems
Yanjie Zhong
Jiaqi Li
Soumendra Lahiri
27
1
0
29 Jan 2024
On the Stochastic (Variance-Reduced) Proximal Gradient Method for Regularized Expected Reward Optimization
Ling Liang
Haizhao Yang
14
1
0
23 Jan 2024
A Coefficient Makes SVRG Effective
Yida Yin
Zhiqiu Xu
Zhiyuan Li
Trevor Darrell
Zhuang Liu
33
1
0
09 Nov 2023
Adaptive Mirror Descent Bilevel Optimization
Feihu Huang
40
1
0
08 Nov 2023
Convergence of Sign-based Random Reshuffling Algorithms for Nonconvex Optimization
Zhen Qin
Zhishuai Liu
Pan Xu
20
1
0
24 Oct 2023
Decentralized Gradient-Free Methods for Stochastic Non-Smooth Non-Convex Optimization
Zhenwei Lin
Jingfan Xia
Qi Deng
Luo Luo
31
3
0
18 Oct 2023
Communication Compression for Byzantine Robust Learning: New Efficient Algorithms and Improved Rates
Ahmad Rammal
Kaja Gruntkowska
Nikita Fedin
Eduard A. Gorbunov
Peter Richtárik
45
5
0
15 Oct 2023
On the Parallel Complexity of Multilevel Monte Carlo in Stochastic Gradient Descent
Kei Ishikawa
BDL
63
0
0
03 Oct 2023
Oracle Complexity Reduction for Model-free LQR: A Stochastic Variance-Reduced Policy Gradient Approach
Leonardo F. Toso
Han Wang
James Anderson
37
2
0
19 Sep 2023
Achieving Linear Speedup in Decentralized Stochastic Compositional Minimax Optimization
Hongchang Gao
37
1
0
25 Jul 2023
Variance-reduced accelerated methods for decentralized stochastic double-regularized nonconvex strongly-concave minimax problems
Gabriel Mancino-Ball
Yangyang Xu
20
8
0
14 Jul 2023
Efficient preconditioned stochastic gradient descent for estimation in latent variable models
C. Baey
Maud Delattre
E. Kuhn
Jean-Benoist Léger
Sarah Lemler
21
4
0
22 Jun 2023
Federated Multi-Sequence Stochastic Approximation with Local Hypergradient Estimation
Davoud Ataee Tarzanagh
Mingchen Li
Pranay Sharma
Samet Oymak
26
0
0
02 Jun 2023
How to escape sharp minima with random perturbations
Kwangjun Ahn
Ali Jadbabaie
S. Sra
ODL
32
6
0
25 May 2023
Sarah Frank-Wolfe: Methods for Constrained Optimization with Best Rates and Practical Features
Aleksandr Beznosikov
David Dobre
Gauthier Gidel
25
5
0
23 Apr 2023
On Momentum-Based Gradient Methods for Bilevel Optimization with Nonconvex Lower-Level
Feihu Huang
32
18
0
07 Mar 2023
Private (Stochastic) Non-Convex Optimization Revisited: Second-Order Stationary Points and Excess Risks
Arun Ganesh
Daogao Liu
Sewoong Oh
Abhradeep Thakurta
ODL
27
12
0
20 Feb 2023
Solving stochastic weak Minty variational inequalities without increasing batch size
Thomas Pethick
Olivier Fercoq
P. Latafat
Panagiotis Patrinos
V. Cevher
18
23
0
17 Feb 2023
Breaking the Lower Bound with (Little) Structure: Acceleration in Non-Convex Stochastic Optimization with Heavy-Tailed Noise
Zijian Liu
Jiawei Zhang
Zhengyuan Zhou
32
12
0
14 Feb 2023
Stochastic Dimension-reduced Second-order Methods for Policy Optimization
Jinsong Liu
Chen Xie
Qinwen Deng
Dongdong Ge
Yi-Li Ye
29
1
0
28 Jan 2023
Faster Gradient-Free Algorithms for Nonsmooth Nonconvex Stochastic Optimization
Le‐Yu Chen
Jing Xu
Luo Luo
31
15
0
16 Jan 2023
Balance is Essence: Accelerating Sparse Training via Adaptive Gradient Correction
Bowen Lei
Dongkuan Xu
Ruqi Zhang
Shuren He
Bani Mallick
32
6
0
09 Jan 2023
Stochastic Variable Metric Proximal Gradient with variance reduction for non-convex composite optimization
G. Fort
Eric Moulines
46
6
0
02 Jan 2023
Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation Constrained Optimization
Zichong Li
Pinzhuo Chen
Sijia Liu
Songtao Lu
Yangyang Xu
27
17
0
19 Dec 2022
Variance-Reduced Conservative Policy Iteration
Naman Agarwal
Brian Bullins
Karan Singh
29
3
0
12 Dec 2022
Decentralized Stochastic Gradient Descent Ascent for Finite-Sum Minimax Problems
Hongchang Gao
24
16
0
06 Dec 2022
An Efficient Stochastic Algorithm for Decentralized Nonconvex-Strongly-Concave Minimax Optimization
Le‐Yu Chen
Haishan Ye
Luo Luo
65
5
0
05 Dec 2022
Zeroth-Order Alternating Gradient Descent Ascent Algorithms for a Class of Nonconvex-Nonconcave Minimax Problems
Zi Xu
Ziqi Wang
Junlin Wang
Y. Dai
18
11
0
24 Nov 2022
Adaptive Stochastic Optimisation of Nonconvex Composite Objectives
Weijia Shao
F. Sivrikaya
S. Albayrak
16
0
0
21 Nov 2022
An Improved Analysis of (Variance-Reduced) Policy Gradient and Natural Policy Gradient Methods
Yanli Liu
Kaipeng Zhang
Tamer Basar
W. Yin
42
102
0
15 Nov 2022
Momentum Aggregation for Private Non-convex ERM
Hoang Tran
Ashok Cutkosky
26
14
0
12 Oct 2022
SARAH-based Variance-reduced Algorithm for Stochastic Finite-sum Cocoercive Variational Inequalities
Aleksandr Beznosikov
Alexander Gasnikov
37
2
0
12 Oct 2022
Zeroth-Order Negative Curvature Finding: Escaping Saddle Points without Gradients
Hualin Zhang
Huan Xiong
Bin Gu
32
7
0
04 Oct 2022
On Quantum Speedups for Nonconvex Optimization via Quantum Tunneling Walks
Yizhou Liu
Weijie J. Su
Tongyang Li
24
17
0
29 Sep 2022
NET-FLEET: Achieving Linear Convergence Speedup for Fully Decentralized Federated Learning with Heterogeneous Data
Xin Zhang
Minghong Fang
Zhuqing Liu
Haibo Yang
Jia-Wei Liu
Zhengyuan Zhu
FedML
22
14
0
17 Aug 2022
SYNTHESIS: A Semi-Asynchronous Path-Integrated Stochastic Gradient Method for Distributed Learning in Computing Clusters
Zhuqing Liu
Xin Zhang
Jia-Wei Liu
32
1
0
17 Aug 2022
Multi-block-Single-probe Variance Reduced Estimator for Coupled Compositional Optimization
Wei Jiang
Gang Li
Yibo Wang
Lijun Zhang
Tianbao Yang
35
16
0
18 Jul 2022
SPIRAL: A superlinearly convergent incremental proximal algorithm for nonconvex finite sum minimization
Pourya Behmandpoor
P. Latafat
Andreas Themelis
Marc Moonen
Panagiotis Patrinos
29
2
0
17 Jul 2022
1
2
3
Next