Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.09471
Cited By
Does data interpolation contradict statistical optimality?
25 June 2018
M. Belkin
Alexander Rakhlin
Alexandre B. Tsybakov
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Does data interpolation contradict statistical optimality?"
50 / 52 papers shown
Title
Supervised Kernel Thinning
Albert Gong
Kyuseong Choi
Raaz Dwivedi
31
0
0
17 Oct 2024
Analysis of the rate of convergence of an over-parametrized convolutional neural network image classifier learned by gradient descent
Michael Kohler
A. Krzyżak
Benjamin Walter
36
1
0
13 May 2024
Faster Convergence of Stochastic Accelerated Gradient Descent under Interpolation
Aaron Mishkin
Mert Pilanci
Mark Schmidt
64
1
0
03 Apr 2024
Analysis of the expected
L
2
L_2
L
2
error of an over-parametrized deep neural network estimate learned by gradient descent without regularization
Selina Drews
Michael Kohler
36
3
0
24 Nov 2023
A decorrelation method for general regression adjustment in randomized experiments
Fangzhou Su
Wenlong Mou
Peng Ding
Martin J. Wainwright
24
1
0
16 Nov 2023
Benign Overfitting and Grokking in ReLU Networks for XOR Cluster Data
Zhiwei Xu
Yutong Wang
Spencer Frei
Gal Vardi
Wei Hu
MLT
28
24
0
04 Oct 2023
A Neural Collapse Perspective on Feature Evolution in Graph Neural Networks
Vignesh Kothapalli
Tom Tirer
Joan Bruna
38
11
0
04 Jul 2023
Mind the spikes: Benign overfitting of kernels and neural networks in fixed dimension
Moritz Haas
David Holzmüller
U. V. Luxburg
Ingo Steinwart
MLT
35
14
0
23 May 2023
Towards understanding neural collapse in supervised contrastive learning with the information bottleneck method
Siwei Wang
S. Palmer
32
2
0
19 May 2023
A Simple Algorithm For Scaling Up Kernel Methods
Tengyu Xu
Bryan Kelly
Semyon Malamud
21
0
0
26 Jan 2023
Strong inductive biases provably prevent harmless interpolation
Michael Aerni
Marco Milanta
Konstantin Donhauser
Fanny Yang
35
9
0
18 Jan 2023
Learning Lipschitz Functions by GD-trained Shallow Overparameterized ReLU Neural Networks
Ilja Kuzborskij
Csaba Szepesvári
21
4
0
28 Dec 2022
Private optimization in the interpolation regime: faster rates and hardness results
Hilal Asi
Karan N. Chadha
Gary Cheng
John C. Duchi
47
5
0
31 Oct 2022
Perturbation Analysis of Neural Collapse
Tom Tirer
Haoxiang Huang
Jonathan Niles-Weed
AAML
46
24
0
29 Oct 2022
On the Impossible Safety of Large AI Models
El-Mahdi El-Mhamdi
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
L. Hoang
Rafael Pinot
Sébastien Rouault
John Stephan
30
31
0
30 Sep 2022
Deep Linear Networks can Benignly Overfit when Shallow Ones Do
Niladri S. Chatterji
Philip M. Long
23
8
0
19 Sep 2022
Benign, Tempered, or Catastrophic: A Taxonomy of Overfitting
Neil Rohit Mallinar
James B. Simon
Amirhesam Abedsoltan
Parthe Pandit
M. Belkin
Preetum Nakkiran
26
37
0
14 Jul 2022
Benefits of Additive Noise in Composing Classes with Bounded Capacity
A. F. Pour
H. Ashtiani
33
3
0
14 Jun 2022
Benefit of Interpolation in Nearest Neighbor Algorithms
Yue Xing
Qifan Song
Guang Cheng
14
28
0
23 Feb 2022
HARFE: Hard-Ridge Random Feature Expansion
Esha Saha
Hayden Schaeffer
Giang Tran
38
14
0
06 Feb 2022
Model, sample, and epoch-wise descents: exact solution of gradient flow in the random feature model
A. Bodin
N. Macris
37
13
0
22 Oct 2021
Conditioning of Random Feature Matrices: Double Descent and Generalization Error
Zhijun Chen
Hayden Schaeffer
37
12
0
21 Oct 2021
A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning
Yehuda Dar
Vidya Muthukumar
Richard G. Baraniuk
34
71
0
06 Sep 2021
Knowledge Distillation as Semiparametric Inference
Tri Dao
G. Kamath
Vasilis Syrgkanis
Lester W. Mackey
40
31
0
20 Apr 2021
Label-Imbalanced and Group-Sensitive Classification under Overparameterization
Ganesh Ramachandra Kini
Orestis Paraskevas
Samet Oymak
Christos Thrampoulidis
29
93
0
02 Mar 2021
SVRG Meets AdaGrad: Painless Variance Reduction
Benjamin Dubois-Taine
Sharan Vaswani
Reza Babanezhad
Mark W. Schmidt
Simon Lacoste-Julien
18
18
0
18 Feb 2021
SGD Generalizes Better Than GD (And Regularization Doesn't Help)
I Zaghloul Amir
Tomer Koren
Roi Livni
21
46
0
01 Feb 2021
Provable Benefits of Overparameterization in Model Compression: From Double Descent to Pruning Neural Networks
Xiangyu Chang
Yingcong Li
Samet Oymak
Christos Thrampoulidis
35
50
0
16 Dec 2020
Understanding Double Descent Requires a Fine-Grained Bias-Variance Decomposition
Ben Adlam
Jeffrey Pennington
UD
39
93
0
04 Nov 2020
Prevalence of Neural Collapse during the terminal phase of deep learning training
Vardan Papyan
Xuemei Han
D. Donoho
35
549
0
18 Aug 2020
What Neural Networks Memorize and Why: Discovering the Long Tail via Influence Estimation
Vitaly Feldman
Chiyuan Zhang
TDI
46
440
0
09 Aug 2020
Multiple Descent: Design Your Own Generalization Curve
Lin Chen
Yifei Min
M. Belkin
Amin Karbasi
DRL
28
61
0
03 Aug 2020
How benign is benign overfitting?
Amartya Sanyal
P. Dokania
Varun Kanade
Philip Torr
NoLa
AAML
23
57
0
08 Jul 2020
Exploring Weight Importance and Hessian Bias in Model Pruning
Mingchen Li
Yahya Sattar
Christos Thrampoulidis
Samet Oymak
28
3
0
19 Jun 2020
When Does Preconditioning Help or Hurt Generalization?
S. Amari
Jimmy Ba
Roger C. Grosse
Xuechen Li
Atsushi Nitanda
Taiji Suzuki
Denny Wu
Ji Xu
36
32
0
18 Jun 2020
Interpolation and Learning with Scale Dependent Kernels
Nicolò Pagliana
Alessandro Rudi
Ernesto De Vito
Lorenzo Rosasco
44
8
0
17 Jun 2020
Post-Estimation Smoothing: A Simple Baseline for Learning with Side Information
Esther Rolf
Michael I. Jordan
Benjamin Recht
11
6
0
12 Mar 2020
Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural Networks
Blake Bordelon
Abdulkadir Canatar
Cengiz Pehlevan
146
201
0
07 Feb 2020
A Precise High-Dimensional Asymptotic Theory for Boosting and Minimum-
ℓ
1
\ell_1
ℓ
1
-Norm Interpolated Classifiers
Tengyuan Liang
Pragya Sur
35
68
0
05 Feb 2020
Exact expressions for double descent and implicit regularization via surrogate random design
Michal Derezinski
Feynman T. Liang
Michael W. Mahoney
27
77
0
10 Dec 2019
A Model of Double Descent for High-dimensional Binary Linear Classification
Zeyu Deng
A. Kammoun
Christos Thrampoulidis
36
145
0
13 Nov 2019
The Role of Neural Network Activation Functions
Rahul Parhi
Robert D. Nowak
26
12
0
05 Oct 2019
The generalization error of random features regression: Precise asymptotics and double descent curve
Song Mei
Andrea Montanari
60
626
0
14 Aug 2019
Benign Overfitting in Linear Regression
Peter L. Bartlett
Philip M. Long
Gábor Lugosi
Alexander Tsigler
MLT
8
762
0
26 Jun 2019
Does Learning Require Memorization? A Short Tale about a Long Tail
Vitaly Feldman
TDI
49
481
0
12 Jun 2019
Linearized two-layers neural networks in high dimension
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
18
241
0
27 Apr 2019
Gradient Descent with Early Stopping is Provably Robust to Label Noise for Overparameterized Neural Networks
Mingchen Li
Mahdi Soltanolkotabi
Samet Oymak
NoLa
47
351
0
27 Mar 2019
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
60
1,610
0
28 Dec 2018
Small ReLU networks are powerful memorizers: a tight analysis of memorization capacity
Chulhee Yun
S. Sra
Ali Jadbabaie
26
117
0
17 Oct 2018
Stochastic (Approximate) Proximal Point Methods: Convergence, Optimality, and Adaptivity
Hilal Asi
John C. Duchi
21
123
0
12 Oct 2018
1
2
Next