Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.07572
Cited By
v1
v2
v3
v4 (latest)
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
20 June 2018
Arthur Jacot
Franck Gabriel
Clément Hongler
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Neural Tangent Kernel: Convergence and Generalization in Neural Networks"
50 / 1,193 papers shown
Title
Distal Interference: Exploring the Limits of Model-Based Continual Learning
H. V. Deventer
Anna Sergeevna Bosman
23
1
0
13 Feb 2024
Which Frequencies do CNNs Need? Emergent Bottleneck Structure in Feature Learning
Yuxiao Wen
Arthur Jacot
141
7
0
12 Feb 2024
Flexible Infinite-Width Graph Convolutional Neural Networks
Ben Anson
Edward Milsom
Laurence Aitchison
SSL
GNN
71
1
0
09 Feb 2024
Loss Landscape of Shallow ReLU-like Neural Networks: Stationary Points, Saddle Escape, and Network Embedding
Zhengqing Wu
Berfin Simsek
Francois Ged
ODL
127
0
0
08 Feb 2024
Neural Networks Learn Statistics of Increasing Complexity
Nora Belrose
Quintin Pope
Lucia Quirke
Alex Troy Mallen
Xiaoli Z. Fern
68
11
0
06 Feb 2024
Neural Network-Based Score Estimation in Diffusion Models: Optimization and Generalization
Yinbin Han
Meisam Razaviyayn
Renyuan Xu
DiffM
138
16
0
28 Jan 2024
Fast and Exact Enumeration of Deep Networks Partitions Regions
Randall Balestriero
Yann LeCun
55
5
0
20 Jan 2024
Neglected Hessian component explains mysteries in Sharpness regularization
Yann N. Dauphin
Atish Agarwala
Hossein Mobahi
FAtt
116
7
0
19 Jan 2024
The Surprising Harmfulness of Benign Overfitting for Adversarial Robustness
Yifan Hao
Tong Zhang
AAML
144
5
0
19 Jan 2024
Adapting Newton's Method to Neural Networks through a Summary of Higher-Order Derivatives
Pierre Wolinski
ODL
161
0
0
06 Dec 2023
Thermally Averaged Magnetic Anisotropy Tensors via Machine Learning Based on Gaussian Moments
Viktor Zaverkin
Julia Netz
Fabian Zills
Andreas Köhn
Johannes Kastner
AI4CE
47
18
0
03 Dec 2023
Towards Sample-specific Backdoor Attack with Clean Labels via Attribute Trigger
Yiming Li
Mingyan Zhu
Junfeng Guo
Tao Wei
Shu-Tao Xia
Zhan Qin
AAML
147
1
0
03 Dec 2023
Spectral-wise Implicit Neural Representation for Hyperspectral Image Reconstruction
Huan Chen
Wangcai Zhao
Tingfa Xu
Shiyun Zhou
Peifu Liu
Jianan Li
117
22
0
02 Dec 2023
Meta-Prior: Meta learning for Adaptive Inverse Problem Solvers
Matthieu Terris
Thomas Moreau
80
1
0
30 Nov 2023
Critical Influence of Overparameterization on Sharpness-aware Minimization
Sungbin Shin
Dongyeop Lee
Maksym Andriushchenko
Namhoon Lee
AAML
160
2
0
29 Nov 2023
Rethinking Backdoor Attacks on Dataset Distillation: A Kernel Method Perspective
Ming-Yu Chung
Sheng-Yen Chou
Chia-Mu Yu
Pin-Yu Chen
Sy-Yen Kuo
Tsung-Yi Ho
DD
159
7
0
28 Nov 2023
Evolutionary algorithms as an alternative to backpropagation for supervised training of Biophysical Neural Networks and Neural ODEs
James Hazelden
Yuhan Helena Liu
Eli Shlizerman
E. Shea-Brown
82
2
0
17 Nov 2023
Spatial Bayesian Neural Networks
A. Zammit‐Mangion
Michael D. Kaminski
Ba-Hien Tran
Maurizio Filippone
Noel Cressie
BDL
53
9
0
16 Nov 2023
Ensemble sampling for linear bandits: small ensembles suffice
David Janz
A. Litvak
Csaba Szepesvári
145
1
0
14 Nov 2023
Initialization Matters: Privacy-Utility Analysis of Overparameterized Neural Networks
Jiayuan Ye
Zhenyu Zhu
Fanghui Liu
Reza Shokri
Volkan Cevher
87
13
0
31 Oct 2023
Efficient kernel surrogates for neural network-based regression
S. Qadeer
A. Engel
Amanda A. Howard
Adam Tsou
Max Vargas
P. Stinis
Tony Chiang
109
5
0
28 Oct 2023
A Spectral Condition for Feature Learning
Greg Yang
James B. Simon
Jeremy Bernstein
115
33
0
26 Oct 2023
Low-Dimensional Gradient Helps Out-of-Distribution Detection
Yingwen Wu
Tao Li
Xinwen Cheng
Jie Yang
Xiaolin Huang
OODD
129
5
0
26 Oct 2023
On the Neural Tangent Kernel of Equilibrium Models
Zhili Feng
J. Zico Kolter
78
6
0
21 Oct 2023
Scalable Neural Network Kernels
Arijit Sehanobish
Krzysztof Choromanski
Yunfan Zhao
Kumar Avinava Dubey
Valerii Likhosherstov
97
7
0
20 Oct 2023
A Hyperparameter Study for Quantum Kernel Methods
Sebastian Egginger
Alona Sakhnenko
J. M. Lorenz
93
9
0
18 Oct 2023
Improved Convergence Rate of Nested Simulation with LSE on Sieve
Ruoxue Liu
Liang Ding
Wei Cao
Lu Zou
28
0
0
18 Oct 2023
When can transformers reason with abstract symbols?
Enric Boix-Adserà
Omid Saremi
Emmanuel Abbe
Samy Bengio
Etai Littwin
Josh Susskind
LRM
NAI
66
17
0
15 Oct 2023
The surrogate Gibbs-posterior of a corrected stochastic MALA: Towards uncertainty quantification for neural networks
S. Bieringer
Gregor Kasieczka
Maximilian F. Steffen
Mathias Trabs
89
1
0
13 Oct 2023
Orthogonal Random Features: Explicit Forms and Sharp Inequalities
N. Demni
Hachem Kadri
72
1
0
11 Oct 2023
A Theory of Non-Linear Feature Learning with One Gradient Step in Two-Layer Neural Networks
Behrad Moniri
Donghwan Lee
Hamed Hassani
Yan Sun
MLT
102
23
0
11 Oct 2023
How Graph Neural Networks Learn: Lessons from Training Dynamics
Chenxiao Yang
Qitian Wu
David Wipf
Ruoyu Sun
Junchi Yan
AI4CE
GNN
62
1
0
08 Oct 2023
Parameter Efficient Multi-task Model Fusion with Partial Linearization
Anke Tang
Li Shen
Yong Luo
Yibing Zhan
Han Hu
Bo Du
Yixin Chen
Dacheng Tao
MoMe
122
36
0
07 Oct 2023
Function-Space Optimality of Neural Architectures with Multivariate Nonlinearities
Rahul Parhi
Michael Unser
134
5
0
05 Oct 2023
Feature Normalization Prevents Collapse of Non-contrastive Learning Dynamics
Han Bao
SSL
MLT
97
1
0
28 Sep 2023
Small-scale proxies for large-scale Transformer training instabilities
Mitchell Wortsman
Peter J. Liu
Lechao Xiao
Katie Everett
A. Alemi
...
Jascha Narain Sohl-Dickstein
Kelvin Xu
Jaehoon Lee
Justin Gilmer
Simon Kornblith
111
99
0
25 Sep 2023
Neural Collapse for Unconstrained Feature Model under Cross-entropy Loss with Imbalanced Data
Wanli Hong
Shuyang Ling
72
18
0
18 Sep 2023
Bias Amplification Enhances Minority Group Performance
Gaotang Li
Jiarui Liu
Wei Hu
87
8
0
13 Sep 2023
Fundamental Limits of Deep Learning-Based Binary Classifiers Trained with Hinge Loss
T. Getu
Georges Kaddoum
M. Bennis
89
1
0
13 Sep 2023
Connecting NTK and NNGP: A Unified Theoretical Framework for Wide Neural Network Learning Dynamics
Yehonatan Avidan
Qianyi Li
H. Sompolinsky
133
8
0
08 Sep 2023
Les Houches Lectures on Deep Learning at Large & Infinite Width
Yasaman Bahri
Boris Hanin
Antonin Brossollet
Vittorio Erba
Christian Keup
Rosalba Pacelli
James B. Simon
AI4CE
60
2
0
04 Sep 2023
Robust Point Cloud Processing through Positional Embedding
Jianqiao Zheng
Xueqian Li
Sameera Ramasinghe
Simon Lucey
3DPC
93
5
0
01 Sep 2023
Random feature approximation for general spectral methods
Mike Nguyen
Nicole Mücke
50
1
0
29 Aug 2023
Kernel Limit of Recurrent Neural Networks Trained on Ergodic Data Sequences
Samuel Chun-Hei Lam
Justin A. Sirignano
K. Spiliopoulos
70
2
0
28 Aug 2023
Six Lectures on Linearized Neural Networks
Theodor Misiakiewicz
Andrea Montanari
137
13
0
25 Aug 2023
Graph Neural Bandits
Yunzhe Qi
Yikun Ban
Jingrui He
73
21
0
21 Aug 2023
Towards Understanding the Generalizability of Delayed Stochastic Gradient Descent
Xiaoge Deng
Li Shen
Shengwei Li
Tao Sun
Dongsheng Li
Dacheng Tao
85
3
0
18 Aug 2023
Convergence of Two-Layer Regression with Nonlinear Units
Yichuan Deng
Zhao Song
Shenghao Xie
80
7
0
16 Aug 2023
Duality Principle and Biologically Plausible Learning: Connecting the Representer Theorem and Hebbian Learning
Yanis Bahroun
D. Chklovskii
Anirvan M. Sengupta
50
0
0
02 Aug 2023
An Exact Kernel Equivalence for Finite Classification Models
Brian Bell
Michaela Geyer
David Glickenstein
Amanda Fernandez
Juston Moore
87
3
0
01 Aug 2023
Previous
1
2
3
4
5
6
...
22
23
24
Next