Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.07572
Cited By
v1
v2
v3
v4 (latest)
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
20 June 2018
Arthur Jacot
Franck Gabriel
Clément Hongler
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Neural Tangent Kernel: Convergence and Generalization in Neural Networks"
50 / 1,163 papers shown
Title
Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels
S. Du
Kangcheng Hou
Barnabás Póczós
Ruslan Salakhutdinov
Ruosong Wang
Keyulu Xu
142
276
0
30 May 2019
Norm-based generalisation bounds for multi-class convolutional neural networks
Antoine Ledent
Waleed Mustafa
Yunwen Lei
Marius Kloft
66
5
0
29 May 2019
On the Inductive Bias of Neural Tangent Kernels
A. Bietti
Julien Mairal
110
260
0
29 May 2019
Gram-Gauss-Newton Method: Learning Overparameterized Neural Networks for Regression Problems
Tianle Cai
Ruiqi Gao
Jikai Hou
Siyu Chen
Dong Wang
Di He
Zhihua Zhang
Liwei Wang
ODL
67
57
0
28 May 2019
Infinitely deep neural networks as diffusion processes
Stefano Peluchetti
Stefano Favaro
ODL
105
32
0
27 May 2019
Fast Convergence of Natural Gradient Descent for Overparameterized Neural Networks
Guodong Zhang
James Martens
Roger C. Grosse
ODL
109
126
0
27 May 2019
Temporal-difference learning with nonlinear function approximation: lazy training and mean field regimes
Andrea Agazzi
Jianfeng Lu
60
8
0
27 May 2019
Asymptotic learning curves of kernel methods: empirical data v.s. Teacher-Student paradigm
S. Spigler
Mario Geiger
Matthieu Wyart
110
38
0
26 May 2019
On Learning Over-parameterized Neural Networks: A Functional Approximation Perspective
Lili Su
Pengkun Yang
MLT
73
54
0
26 May 2019
What Can ResNet Learn Efficiently, Going Beyond Kernels?
Zeyuan Allen-Zhu
Yuanzhi Li
416
183
0
24 May 2019
Explicitizing an Implicit Bias of the Frequency Principle in Two-layer Neural Networks
Yaoyu Zhang
Zhi-Qin John Xu
Yaoyu Zhang
Zheng Ma
MLT
AI4CE
130
38
0
24 May 2019
Neural Temporal-Difference and Q-Learning Provably Converge to Global Optima
Qi Cai
Zhuoran Yang
Jason D. Lee
Zhaoran Wang
66
30
0
24 May 2019
Gradient Descent can Learn Less Over-parameterized Two-layer Neural Networks on Classification Problems
Atsushi Nitanda
Geoffrey Chinot
Taiji Suzuki
MLT
93
34
0
23 May 2019
A type of generalization error induced by initialization in deep neural networks
Yaoyu Zhang
Zhi-Qin John Xu
Yaoyu Zhang
Zheng Ma
128
51
0
19 May 2019
An Information Theoretic Interpretation to Deep Neural Networks
Shao-Lun Huang
Xiangxiang Xu
Lizhong Zheng
G. Wornell
FAtt
87
44
0
16 May 2019
Do Kernel and Neural Embeddings Help in Training and Generalization?
Arman Rahbar
Emilio Jorge
Devdatt Dubhashi
Morteza Haghir Chehreghani
MLT
97
0
0
13 May 2019
The Effect of Network Width on Stochastic Gradient Descent and Generalization: an Empirical Study
Daniel S. Park
Jascha Narain Sohl-Dickstein
Quoc V. Le
Samuel L. Smith
96
57
0
09 May 2019
Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation
Colin Wei
Tengyu Ma
85
110
0
09 May 2019
Similarity of Neural Network Representations Revisited
Simon Kornblith
Mohammad Norouzi
Honglak Lee
Geoffrey E. Hinton
161
1,438
0
01 May 2019
Linearized two-layers neural networks in high dimension
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
93
243
0
27 Apr 2019
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
253
928
0
26 Apr 2019
Implicit regularization for deep neural networks driven by an Ornstein-Uhlenbeck like process
Guy Blanc
Neha Gupta
Gregory Valiant
Paul Valiant
163
147
0
19 Apr 2019
The Impact of Neural Network Overparameterization on Gradient Confusion and Stochastic Gradient Descent
Karthik A. Sankararaman
Soham De
Zheng Xu
Wenjie Huang
Tom Goldstein
ODL
106
105
0
15 Apr 2019
A Selective Overview of Deep Learning
Jianqing Fan
Cong Ma
Yiqiao Zhong
BDL
VLM
198
135
0
10 Apr 2019
Analysis of the Gradient Descent Algorithm for a Deep Neural Network Model with Skip-connections
E. Weinan
Chao Ma
Qingcan Wang
Lei Wu
MLT
103
22
0
10 Apr 2019
A Comparative Analysis of the Optimization and Generalization Property of Two-layer Neural Network and Random Feature Models Under Gradient Descent Dynamics
E. Weinan
Chao Ma
Lei Wu
MLT
74
123
0
08 Apr 2019
Convergence rates for the stochastic gradient descent method for non-convex objective functions
Benjamin J. Fehrman
Benjamin Gess
Arnulf Jentzen
96
101
0
02 Apr 2019
On the Power and Limitations of Random Features for Understanding Neural Networks
Gilad Yehudai
Ohad Shamir
MLT
123
182
0
01 Apr 2019
Gradient Descent with Early Stopping is Provably Robust to Label Noise for Overparameterized Neural Networks
Mingchen Li
Mahdi Soltanolkotabi
Samet Oymak
NoLa
125
354
0
27 Mar 2019
Towards Characterizing Divergence in Deep Q-Learning
Joshua Achiam
Ethan Knight
Pieter Abbeel
55
98
0
21 Mar 2019
Surprises in High-Dimensional Ridgeless Least Squares Interpolation
Trevor Hastie
Andrea Montanari
Saharon Rosset
Robert Tibshirani
260
747
0
19 Mar 2019
Stabilize Deep ResNet with A Sharp Scaling Factor
τ
τ
τ
Huishuai Zhang
Da Yu
Mingyang Yi
Wei Chen
Tie-Yan Liu
57
9
0
17 Mar 2019
Mean Field Analysis of Deep Neural Networks
Justin A. Sirignano
K. Spiliopoulos
93
82
0
11 Mar 2019
Function Space Particle Optimization for Bayesian Neural Networks
Ziyu Wang
Zhaolin Ren
Jun Zhu
Bo Zhang
BDL
63
65
0
26 Feb 2019
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
Jaehoon Lee
Lechao Xiao
S. Schoenholz
Yasaman Bahri
Roman Novak
Jascha Narain Sohl-Dickstein
Jeffrey Pennington
218
1,111
0
18 Feb 2019
Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
90
279
0
16 Feb 2019
Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation
Greg Yang
182
289
0
13 Feb 2019
Uniform convergence may be unable to explain generalization in deep learning
Vaishnavh Nagarajan
J. Zico Kolter
MoMe
AI4CE
92
317
0
13 Feb 2019
Mean Field Limit of the Learning Dynamics of Multilayer Neural Networks
Phan-Minh Nguyen
AI4CE
76
72
0
07 Feb 2019
Are All Layers Created Equal?
Chiyuan Zhang
Samy Bengio
Y. Singer
109
140
0
06 Feb 2019
Generalization Error Bounds of Gradient Descent for Learning Over-parameterized Deep ReLU Networks
Yuan Cao
Quanquan Gu
ODL
MLT
AI4CE
119
158
0
04 Feb 2019
Stiffness: A New Perspective on Generalization in Neural Networks
Stanislav Fort
Pawel Krzysztof Nowak
Stanislaw Jastrzebski
S. Narayanan
131
94
0
28 Jan 2019
Dynamical Isometry and a Mean Field Theory of LSTMs and GRUs
D. Gilboa
B. Chang
Minmin Chen
Greg Yang
S. Schoenholz
Ed H. Chi
Jeffrey Pennington
86
42
0
25 Jan 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
232
974
0
24 Jan 2019
A Theoretical Analysis of Deep Q-Learning
Jianqing Fan
Zhuoran Yang
Yuchen Xie
Zhaoran Wang
190
610
0
01 Jan 2019
On the Benefit of Width for Neural Networks: Disappearance of Bad Basins
Dawei Li
Tian Ding
Ruoyu Sun
114
38
0
28 Dec 2018
On Lazy Training in Differentiable Programming
Lénaïc Chizat
Edouard Oyallon
Francis R. Bach
111
840
0
19 Dec 2018
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers
Zeyuan Allen-Zhu
Yuanzhi Li
Yingyu Liang
MLT
219
775
0
12 Nov 2018
A Convergence Theory for Deep Learning via Over-Parameterization
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
AI4CE
ODL
301
1,470
0
09 Nov 2018
Gradient Descent Finds Global Minima of Deep Neural Networks
S. Du
Jason D. Lee
Haochuan Li
Liwei Wang
Masayoshi Tomizuka
ODL
263
1,136
0
09 Nov 2018
Previous
1
2
3
...
22
23
24
Next