Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.07538
Cited By
Towards Robust Interpretability with Self-Explaining Neural Networks
20 June 2018
David Alvarez-Melis
Tommi Jaakkola
MILM
XAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Robust Interpretability with Self-Explaining Neural Networks"
50 / 507 papers shown
Title
Understanding Instance-based Interpretability of Variational Auto-Encoders
Zhifeng Kong
Kamalika Chaudhuri
TDI
16
27
0
29 May 2021
The Definitions of Interpretability and Learning of Interpretable Models
Weishen Pan
Changshui Zhang
FaML
XAI
11
3
0
29 May 2021
How to Explain Neural Networks: an Approximation Perspective
Hangcheng Dong
Bingguo Liu
Fengdong Chen
Dong Ye
Guodong Liu
FAtt
12
1
0
17 May 2021
Information-theoretic Evolution of Model Agnostic Global Explanations
Sukriti Verma
Nikaash Puri
Piyush B. Gupta
Balaji Krishnamurthy
FAtt
29
0
0
14 May 2021
XAI Handbook: Towards a Unified Framework for Explainable AI
Sebastián M. Palacio
Adriano Lucieri
Mohsin Munir
Jörn Hees
Sheraz Ahmed
Andreas Dengel
25
32
0
14 May 2021
Sanity Simulations for Saliency Methods
Joon Sik Kim
Gregory Plumb
Ameet Talwalkar
FAtt
38
17
0
13 May 2021
Rationalization through Concepts
Diego Antognini
Boi Faltings
FAtt
27
19
0
11 May 2021
From Human Explanation to Model Interpretability: A Framework Based on Weight of Evidence
David Alvarez-Melis
Harmanpreet Kaur
Hal Daumé
Hanna M. Wallach
Jennifer Wortman Vaughan
FAtt
51
27
0
27 Apr 2021
Weakly Supervised Multi-task Learning for Concept-based Explainability
Catarina Belém
Vladimir Balayan
Pedro Saleiro
P. Bizarro
81
10
0
26 Apr 2021
Improving Attribution Methods by Learning Submodular Functions
Piyushi Manupriya
Tarun Ram Menta
S. Jagarlapudi
V. Balasubramanian
TDI
24
6
0
19 Apr 2021
LioNets: A Neural-Specific Local Interpretation Technique Exploiting Penultimate Layer Information
Ioannis Mollas
Nick Bassiliades
Grigorios Tsoumakas
23
7
0
13 Apr 2021
Shapley Explanation Networks
Rui Wang
Xiaoqian Wang
David I. Inouye
TDI
FAtt
24
44
0
06 Apr 2021
Explainability-aided Domain Generalization for Image Classification
Robin M. Schmidt
FAtt
OOD
24
1
0
05 Apr 2021
NetAdaptV2: Efficient Neural Architecture Search with Fast Super-Network Training and Architecture Optimization
Tien-Ju Yang
Yi-Lun Liao
Vivienne Sze
21
25
0
31 Mar 2021
Efficient Explanations from Empirical Explainers
Robert Schwarzenberg
Nils Feldhus
Sebastian Möller
FAtt
32
9
0
29 Mar 2021
Building Reliable Explanations of Unreliable Neural Networks: Locally Smoothing Perspective of Model Interpretation
Dohun Lim
Hyeonseok Lee
Sungchan Kim
FAtt
AAML
23
13
0
26 Mar 2021
SelfExplain: A Self-Explaining Architecture for Neural Text Classifiers
Dheeraj Rajagopal
Vidhisha Balachandran
Eduard H. Hovy
Yulia Tsvetkov
MILM
SSL
FAtt
AI4TS
16
65
0
23 Mar 2021
Weakly Supervised Recovery of Semantic Attributes
Ameen Ali
Tomer Galanti
Evgeniy Zheltonozhskiy
Chaim Baskin
Lior Wolf
34
0
0
22 Mar 2021
XProtoNet: Diagnosis in Chest Radiography with Global and Local Explanations
Eunji Kim
Siwon Kim
Minji Seo
Sungroh Yoon
ViT
FAtt
16
113
0
19 Mar 2021
Learning to Predict with Supporting Evidence: Applications to Clinical Risk Prediction
Aniruddh Raghu
John Guttag
K. Young
E. Pomerantsev
Adrian V. Dalca
Collin M. Stultz
13
9
0
04 Mar 2021
Evaluating Robustness of Counterfactual Explanations
André Artelt
Valerie Vaquet
Riza Velioglu
Fabian Hinder
Johannes Brinkrolf
M. Schilling
Barbara Hammer
14
46
0
03 Mar 2021
Benchmarking and Survey of Explanation Methods for Black Box Models
F. Bodria
F. Giannotti
Riccardo Guidotti
Francesca Naretto
D. Pedreschi
S. Rinzivillo
XAI
33
220
0
25 Feb 2021
Teach Me to Explain: A Review of Datasets for Explainable Natural Language Processing
Sarah Wiegreffe
Ana Marasović
XAI
11
141
0
24 Feb 2021
DNN2LR: Automatic Feature Crossing for Credit Scoring
Qiang Liu
Zhaocheng Liu
Haoli Zhang
Yuntian Chen
Jun Zhu
6
0
0
24 Feb 2021
Resilience of Bayesian Layer-Wise Explanations under Adversarial Attacks
Ginevra Carbone
G. Sanguinetti
Luca Bortolussi
FAtt
AAML
21
4
0
22 Feb 2021
PatchX: Explaining Deep Models by Intelligible Pattern Patches for Time-series Classification
Dominique Mercier
Andreas Dengel
Sheraz Ahmed
AI4TS
12
5
0
11 Feb 2021
Benchmarks, Algorithms, and Metrics for Hierarchical Disentanglement
A. Ross
Finale Doshi-Velez
DRL
24
13
0
09 Feb 2021
Bandits for Learning to Explain from Explanations
Freya Behrens
Stefano Teso
Davide Mottin
FAtt
11
1
0
07 Feb 2021
Evaluating the Interpretability of Generative Models by Interactive Reconstruction
A. Ross
Nina Chen
Elisa Zhao Hang
Elena L. Glassman
Finale Doshi-Velez
105
49
0
02 Feb 2021
How can I choose an explainer? An Application-grounded Evaluation of Post-hoc Explanations
Sérgio Jesus
Catarina Belém
Vladimir Balayan
João Bento
Pedro Saleiro
P. Bizarro
João Gama
136
120
0
21 Jan 2021
Interpretable Models for Granger Causality Using Self-explaining Neural Networks
Ricards Marcinkevics
Julia E. Vogt
MILM
CML
19
61
0
19 Jan 2021
U-Noise: Learnable Noise Masks for Interpretable Image Segmentation
Teddy Koker
Fatemehsadat Mireshghallah
Tom Titcombe
Georgios Kaissis
6
21
0
14 Jan 2021
Explainability of deep vision-based autonomous driving systems: Review and challenges
Éloi Zablocki
H. Ben-younes
P. Pérez
Matthieu Cord
XAI
42
170
0
13 Jan 2021
Comprehensible Convolutional Neural Networks via Guided Concept Learning
Sandareka Wickramanayake
W. Hsu
M. Lee
SSL
17
23
0
11 Jan 2021
Robust Machine Learning Systems: Challenges, Current Trends, Perspectives, and the Road Ahead
Muhammad Shafique
Mahum Naseer
T. Theocharides
C. Kyrkou
O. Mutlu
Lois Orosa
Jungwook Choi
OOD
81
100
0
04 Jan 2021
Quantitative Evaluations on Saliency Methods: An Experimental Study
Xiao-hui Li
Yuhan Shi
Haoyang Li
Wei Bai
Yuanwei Song
Caleb Chen Cao
Lei Chen
FAtt
XAI
42
18
0
31 Dec 2020
Analyzing Representations inside Convolutional Neural Networks
Uday Singh Saini
Evangelos E. Papalexakis
FAtt
19
2
0
23 Dec 2020
On Exploiting Hitting Sets for Model Reconciliation
Stylianos Loukas Vasileiou
Alessandro Previti
William Yeoh
11
26
0
16 Dec 2020
Deep Argumentative Explanations
Emanuele Albini
Piyawat Lertvittayakumjorn
Antonio Rago
Francesca Toni
AAML
21
4
0
10 Dec 2020
Interpretability and Explainability: A Machine Learning Zoo Mini-tour
Ricards Marcinkevics
Julia E. Vogt
XAI
28
119
0
03 Dec 2020
Self-Explaining Structures Improve NLP Models
Zijun Sun
Chun Fan
Qinghong Han
Xiaofei Sun
Yuxian Meng
Fei Wu
Jiwei Li
MILM
XAI
LRM
FAtt
43
38
0
03 Dec 2020
Teaching the Machine to Explain Itself using Domain Knowledge
Vladimir Balayan
Pedro Saleiro
Catarina Belém
L. Krippahl
P. Bizarro
15
8
0
27 Nov 2020
Data Representing Ground-Truth Explanations to Evaluate XAI Methods
S. Amiri
Rosina O. Weber
Prateek Goel
Owen Brooks
Archer Gandley
Brian Kitchell
Aaron Zehm
XAI
43
8
0
18 Nov 2020
A Quantitative Perspective on Values of Domain Knowledge for Machine Learning
Jianyi Yang
Shaolei Ren
FAtt
FaML
6
5
0
17 Nov 2020
A Survey on the Explainability of Supervised Machine Learning
Nadia Burkart
Marco F. Huber
FaML
XAI
25
752
0
16 Nov 2020
GANMEX: One-vs-One Attributions Guided by GAN-based Counterfactual Explanation Baselines
Sheng-Min Shih
Pin-Ju Tien
Zohar Karnin
FAtt
11
14
0
11 Nov 2020
What Did You Think Would Happen? Explaining Agent Behaviour Through Intended Outcomes
Herman Yau
Chris Russell
Simon Hadfield
FAtt
LRM
28
36
0
10 Nov 2020
Analyzing the tree-layer structure of Deep Forests
Ludovic Arnould
Claire Boyer
Erwan Scornet
Sorbonne Lpsm
AI4CE
9
10
0
29 Oct 2020
Interpretable Machine Learning Models for Predicting and Explaining Vehicle Fuel Consumption Anomalies
A. Barbado
Óscar Corcho
14
11
0
28 Oct 2020
Now You See Me (CME): Concept-based Model Extraction
Dmitry Kazhdan
B. Dimanov
M. Jamnik
Pietro Lió
Adrian Weller
25
72
0
25 Oct 2020
Previous
1
2
3
...
10
11
7
8
9
Next