Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.07538
Cited By
Towards Robust Interpretability with Self-Explaining Neural Networks
20 June 2018
David Alvarez-Melis
Tommi Jaakkola
MILM
XAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Robust Interpretability with Self-Explaining Neural Networks"
50 / 507 papers shown
Title
Metafeatures-based Rule-Extraction for Classifiers on Behavioral and Textual Data
Yanou Ramon
David Martens
Theodoros Evgeniou
S. Praet
13
8
0
10 Mar 2020
ResNets, NeuralODEs and CT-RNNs are Particular Neural Regulatory Networks
Radu Grosu
16
1
0
26 Feb 2020
Self-explaining AI as an alternative to interpretable AI
Daniel C. Elton
8
56
0
12 Feb 2020
DANCE: Enhancing saliency maps using decoys
Y. Lu
Wenbo Guo
Xinyu Xing
William Stafford Noble
AAML
34
14
0
03 Feb 2020
Regularizing Reasons for Outfit Evaluation with Gradient Penalty
Xingxing Zou
Zhizhong Li
Ke Bai
Dahua Lin
W. Wong
21
6
0
02 Feb 2020
Black Box Explanation by Learning Image Exemplars in the Latent Feature Space
Riccardo Guidotti
A. Monreale
Stan Matwin
D. Pedreschi
FAtt
11
67
0
27 Jan 2020
An interpretable neural network model through piecewise linear approximation
Mengzhuo Guo
Qingpeng Zhang
Xiuwu Liao
D. Zeng
MILM
FAtt
19
7
0
20 Jan 2020
A Formal Approach to Explainability
Lior Wolf
Tomer Galanti
Tamir Hazan
FAtt
GAN
6
22
0
15 Jan 2020
On Interpretability of Artificial Neural Networks: A Survey
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAML
AI4CE
38
300
0
08 Jan 2020
Meta Decision Trees for Explainable Recommendation Systems
Eyal Shulman
Lior Wolf
18
18
0
19 Dec 2019
Sanity Checks for Saliency Metrics
Richard J. Tomsett
Daniel Harborne
Supriyo Chakraborty
Prudhvi K. Gurram
Alun D. Preece
XAI
16
167
0
29 Nov 2019
Attributional Robustness Training using Input-Gradient Spatial Alignment
M. Singh
Nupur Kumari
Puneet Mangla
Abhishek Sinha
V. Balasubramanian
Balaji Krishnamurthy
OOD
26
10
0
29 Nov 2019
Towards a Unified Evaluation of Explanation Methods without Ground Truth
Hao Zhang
Jiayi Chen
Haotian Xue
Quanshi Zhang
XAI
24
7
0
20 Nov 2019
Purifying Interaction Effects with the Functional ANOVA: An Efficient Algorithm for Recovering Identifiable Additive Models
Benjamin J. Lengerich
S. Tan
C. Chang
Giles Hooker
R. Caruana
21
39
0
12 Nov 2019
Sobolev Independence Criterion
Youssef Mroueh
Tom Sercu
Mattia Rigotti
Inkit Padhi
Cicero Nogueira dos Santos
11
5
0
31 Oct 2019
Weight of Evidence as a Basis for Human-Oriented Explanations
David Alvarez-Melis
Hal Daumé
Jennifer Wortman Vaughan
Hanna M. Wallach
XAI
FAtt
21
20
0
29 Oct 2019
Rethinking Cooperative Rationalization: Introspective Extraction and Complement Control
Mo Yu
Shiyu Chang
Yang Zhang
Tommi Jaakkola
21
140
0
29 Oct 2019
A Game Theoretic Approach to Class-wise Selective Rationalization
Shiyu Chang
Yang Zhang
Mo Yu
Tommi Jaakkola
22
60
0
28 Oct 2019
How a minimal learning agent can infer the existence of unobserved variables in a complex environment
K. Ried
B. Eva
Thomas Müller
H. Briegel
9
15
0
15 Oct 2019
Interpretable Text Classification Using CNN and Max-pooling
Hao Cheng
Xiaoqing Yang
Zang Li
Yanghua Xiao
Yucheng Lin
FAtt
6
5
0
14 Oct 2019
MonoNet: Towards Interpretable Models by Learning Monotonic Features
An-phi Nguyen
María Rodríguez Martínez
FAtt
16
13
0
30 Sep 2019
One Explanation Does Not Fit All: A Toolkit and Taxonomy of AI Explainability Techniques
Vijay Arya
Rachel K. E. Bellamy
Pin-Yu Chen
Amit Dhurandhar
Michael Hind
...
Karthikeyan Shanmugam
Moninder Singh
Kush R. Varshney
Dennis L. Wei
Yunfeng Zhang
XAI
8
390
0
06 Sep 2019
The Partial Response Network: a neural network nomogram
P. Lisboa
S. Ortega-Martorell
Sadie Cashman
I. Olier
20
2
0
16 Aug 2019
TABOR: A Highly Accurate Approach to Inspecting and Restoring Trojan Backdoors in AI Systems
Wenbo Guo
Lun Wang
Xinyu Xing
Min Du
D. Song
22
227
0
02 Aug 2019
Interpretability Beyond Classification Output: Semantic Bottleneck Networks
M. Losch
Mario Fritz
Bernt Schiele
UQCV
31
60
0
25 Jul 2019
Benchmarking Attribution Methods with Relative Feature Importance
Mengjiao Yang
Been Kim
FAtt
XAI
21
140
0
23 Jul 2019
The Dangers of Post-hoc Interpretability: Unjustified Counterfactual Explanations
Thibault Laugel
Marie-Jeanne Lesot
Christophe Marsala
X. Renard
Marcin Detyniecki
19
194
0
22 Jul 2019
Towards Robust, Locally Linear Deep Networks
Guang-He Lee
David Alvarez-Melis
Tommi Jaakkola
ODL
19
48
0
07 Jul 2019
On Validating, Repairing and Refining Heuristic ML Explanations
Alexey Ignatiev
Nina Narodytska
Sasha Rubin
FAtt
LRM
6
62
0
04 Jul 2019
Explanations can be manipulated and geometry is to blame
Ann-Kathrin Dombrowski
Maximilian Alber
Christopher J. Anders
M. Ackermann
K. Müller
Pan Kessel
AAML
FAtt
22
329
0
19 Jun 2019
Issues with post-hoc counterfactual explanations: a discussion
Thibault Laugel
Marie-Jeanne Lesot
Christophe Marsala
Marcin Detyniecki
CML
107
44
0
11 Jun 2019
Is Attention Interpretable?
Sofia Serrano
Noah A. Smith
14
670
0
09 Jun 2019
Model Agnostic Contrastive Explanations for Structured Data
Amit Dhurandhar
Tejaswini Pedapati
Avinash Balakrishnan
Pin-Yu Chen
Karthikeyan Shanmugam
Ruchi Puri
FAtt
20
82
0
31 May 2019
Certifiably Robust Interpretation in Deep Learning
Alexander Levine
Sahil Singla
S. Feizi
FAtt
AAML
23
63
0
28 May 2019
EDUCE: Explaining model Decisions through Unsupervised Concepts Extraction
Diane Bouchacourt
Ludovic Denoyer
FAtt
21
21
0
28 May 2019
Analyzing the Interpretability Robustness of Self-Explaining Models
Haizhong Zheng
Earlence Fernandes
A. Prakash
AAML
LRM
18
7
0
27 May 2019
Not All Features Are Equal: Feature Leveling Deep Neural Networks for Better Interpretation
Yingjing Lu
Runde Yang
MILM
16
2
0
24 May 2019
TSXplain: Demystification of DNN Decisions for Time-Series using Natural Language and Statistical Features
Mohsin Munir
Shoaib Ahmed Siddiqui
Ferdinand Küsters
Dominique Mercier
Andreas Dengel
Sheraz Ahmed
AI4TS
12
19
0
15 May 2019
Consensus-based Interpretable Deep Neural Networks with Application to Mortality Prediction
Shaeke Salman
S. N. Payrovnaziri
Xiuwen Liu
Pablo Rengifo-Moreno
Zhe He
14
0
0
14 May 2019
When Deep Learning Met Code Search
J. Cambronero
Hongyu Li
Seohyun Kim
Koushik Sen
S. Chandra
CLIP
24
218
0
09 May 2019
Visualizing Deep Networks by Optimizing with Integrated Gradients
Zhongang Qi
Saeed Khorram
Fuxin Li
FAtt
17
122
0
02 May 2019
Explainability in Human-Agent Systems
A. Rosenfeld
A. Richardson
XAI
27
203
0
17 Apr 2019
Interpretable Deep Learning for Two-Prong Jet Classification with Jet Spectra
A. Chakraborty
Sung Hak Lim
M. Nojiri
37
43
0
03 Apr 2019
Explaining Anomalies Detected by Autoencoders Using SHAP
Liat Antwarg
Ronnie Mindlin Miller
Bracha Shapira
Lior Rokach
FAtt
TDI
16
86
0
06 Mar 2019
Functional Transparency for Structured Data: a Game-Theoretic Approach
Guang-He Lee
Wengong Jin
David Alvarez-Melis
Tommi Jaakkola
24
19
0
26 Feb 2019
Regularizing Black-box Models for Improved Interpretability
Gregory Plumb
Maruan Al-Shedivat
Ángel Alexander Cabrera
Adam Perer
Eric P. Xing
Ameet Talwalkar
AAML
24
79
0
18 Feb 2019
Neural Network Attributions: A Causal Perspective
Aditya Chattopadhyay
Piyushi Manupriya
Anirban Sarkar
V. Balasubramanian
CML
6
143
0
06 Feb 2019
Fooling Neural Network Interpretations via Adversarial Model Manipulation
Juyeon Heo
Sunghwan Joo
Taesup Moon
AAML
FAtt
13
201
0
06 Feb 2019
Understanding Impacts of High-Order Loss Approximations and Features in Deep Learning Interpretation
Sahil Singla
Eric Wallace
Shi Feng
S. Feizi
FAtt
18
59
0
01 Feb 2019
Fairwashing: the risk of rationalization
Ulrich Aïvodji
Hiromi Arai
O. Fortineau
Sébastien Gambs
Satoshi Hara
Alain Tapp
FaML
19
142
0
28 Jan 2019
Previous
1
2
3
...
10
11
9
Next