Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.07366
Cited By
Neural Ordinary Differential Equations
19 June 2018
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural Ordinary Differential Equations"
50 / 914 papers shown
Title
Monotone operator equilibrium networks
Ezra Winston
J. Zico Kolter
32
130
0
15 Jun 2020
On Second Order Behaviour in Augmented Neural ODEs
Alexander Norcliffe
Cristian Bodnar
Ben Day
Nikola Simidjievski
Pietro Lió
28
90
0
12 Jun 2020
Neural Ordinary Differential Equations on Manifolds
Luca Falorsi
Patrick Forré
BDL
AI4CE
6
33
0
11 Jun 2020
Learning normalizing flows from Entropy-Kantorovich potentials
Chris Finlay
Augusto Gerolin
Adam M. Oberman
Aram-Alexandre Pooladian
33
23
0
10 Jun 2020
Machine Learning and Control Theory
A. Bensoussan
Yiqun Li
Dinh Phan Cao Nguyen
M. Tran
S. Yam
Xiang Zhou
AI4CE
24
12
0
10 Jun 2020
The Lipschitz Constant of Self-Attention
Hyunjik Kim
George Papamakarios
A. Mnih
14
134
0
08 Jun 2020
SoftFlow: Probabilistic Framework for Normalizing Flow on Manifolds
Hyeongju Kim
Hyeonseung Lee
Woohyun Kang
Joun Yeop Lee
N. Kim
3DPC
19
114
0
08 Jun 2020
The Power Spherical distribution
Nicola De Cao
Wilker Aziz
22
28
0
08 Jun 2020
Predictive Coding Approximates Backprop along Arbitrary Computation Graphs
Beren Millidge
Alexander Tschantz
Christopher L. Buckley
24
118
0
07 Jun 2020
UFO-BLO: Unbiased First-Order Bilevel Optimization
Valerii Likhosherstov
Xingyou Song
K. Choromanski
Jared Davis
Adrian Weller
32
7
0
05 Jun 2020
The Convolution Exponential and Generalized Sylvester Flows
Emiel Hoogeboom
Victor Garcia Satorras
Jakub M. Tomczak
Max Welling
25
28
0
02 Jun 2020
Discretize-Optimize vs. Optimize-Discretize for Time-Series Regression and Continuous Normalizing Flows
Derek Onken
Lars Ruthotto
BDL
24
51
0
27 May 2020
Neural Controlled Differential Equations for Irregular Time Series
Patrick Kidger
James Morrill
James Foster
Terry Lyons
AI4TS
25
449
0
18 May 2020
Deep Learning for Post-Processing Ensemble Weather Forecasts
Peter Grönquist
Chengyuan Yao
Tal Ben-Nun
Nikoli Dryden
P. Dueben
Shigang Li
Torsten Hoefler
17
165
0
18 May 2020
Revealing hidden dynamics from time-series data by ODENet
Pipi Hu
Wuyue Yang
Yi Zhu
L. Hong
AI4TS
24
35
0
11 May 2020
Physarum Powered Differentiable Linear Programming Layers and Applications
Zihang Meng
Sathya Ravi
Vikas Singh
21
5
0
30 Apr 2020
RotEqNet: Rotation-Equivariant Network for Fluid Systems with Symmetric High-Order Tensors
Liyao (Mars) Gao
Yifan Du
Hongshan Li
Guang Lin
27
12
0
28 Apr 2020
Time Series Forecasting With Deep Learning: A Survey
Bryan Lim
S. Zohren
AI4TS
AI4CE
36
1,186
0
28 Apr 2020
Deep Learning for Time Series Forecasting: Tutorial and Literature Survey
Konstantinos Benidis
Syama Sundar Rangapuram
Valentin Flunkert
Bernie Wang
Danielle C. Maddix
...
David Salinas
Lorenzo Stella
François-Xavier Aubet
Laurent Callot
Tim Januschowski
AI4TS
25
176
0
21 Apr 2020
DeepCFD: Efficient Steady-State Laminar Flow Approximation with Deep Convolutional Neural Networks
M. Ribeiro
A. Rehman
Sheraz Ahmed
Andreas Dengel
4
75
0
19 Apr 2020
CPR-GCN: Conditional Partial-Residual Graph Convolutional Network in Automated Anatomical Labeling of Coronary Arteries
Han Yang
Xingjian Zhen
Ying Chi
Lei Zhang
Xiansheng Hua
MedIm
16
43
0
19 Mar 2020
Stable Neural Flows
Stefano Massaroli
Michael Poli
Michelangelo Bin
Jinkyoo Park
Atsushi Yamashita
Hajime Asama
46
30
0
18 Mar 2020
Learning to Encode Position for Transformer with Continuous Dynamical Model
Xuanqing Liu
Hsiang-Fu Yu
Inderjit Dhillon
Cho-Jui Hsieh
8
107
0
13 Mar 2020
A Mean-field Analysis of Deep ResNet and Beyond: Towards Provable Optimization Via Overparameterization From Depth
Yiping Lu
Chao Ma
Yulong Lu
Jianfeng Lu
Lexing Ying
MLT
36
78
0
11 Mar 2020
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
130
424
0
10 Mar 2020
TIME: A Transparent, Interpretable, Model-Adaptive and Explainable Neural Network for Dynamic Physical Processes
Gurpreet Singh
Soumyajit Gupta
Matt Lease
Clint Dawson
AI4TS
AI4CE
19
2
0
05 Mar 2020
Methods to Recover Unknown Processes in Partial Differential Equations Using Data
Zhen Chen
Kailiang Wu
D. Xiu
19
3
0
05 Mar 2020
Bayesian System ID: Optimal management of parameter, model, and measurement uncertainty
Nicholas Galioto
Alex Gorodetsky
9
32
0
04 Mar 2020
Disentangling Physical Dynamics from Unknown Factors for Unsupervised Video Prediction
Vincent Le Guen
Nicolas Thome
AI4CE
PINN
89
288
0
03 Mar 2020
Learning Multivariate Hawkes Processes at Scale
Maximilian Nickel
Matt Le
32
17
0
28 Feb 2020
Differentiable Molecular Simulations for Control and Learning
Wujie Wang
Simon Axelrod
Rafael Gómez-Bombarelli
AI4CE
106
49
0
27 Feb 2020
Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data
Marc Finzi
Samuel Stanton
Pavel Izmailov
A. Wilson
17
316
0
25 Feb 2020
Stochasticity in Neural ODEs: An Empirical Study
V. Oganesyan
Alexandra Volokhova
Dmitry Vetrov
BDL
22
20
0
22 Feb 2020
Stochastic Latent Residual Video Prediction
Jean-Yves Franceschi
E. Delasalles
Mickaël Chen
Sylvain Lamprier
Patrick Gallinari
VGen
26
159
0
21 Feb 2020
Dissipative SymODEN: Encoding Hamiltonian Dynamics with Dissipation and Control into Deep Learning
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
PINN
AI4CE
34
78
0
20 Feb 2020
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
Chin-Wei Huang
Laurent Dinh
Aaron Courville
DRL
31
87
0
17 Feb 2020
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
57
176
0
16 Feb 2020
Hypernetwork approach to generating point clouds
P. Spurek
Sebastian Winczowski
Jacek Tabor
M. Zamorski
Maciej Ziȩba
Tomasz Trzciñski
3DPC
39
34
0
10 Feb 2020
TrajectoryNet: A Dynamic Optimal Transport Network for Modeling Cellular Dynamics
Alexander Tong
Jessie Huang
Guy Wolf
David van Dijk
Smita Krishnaswamy
29
158
0
09 Feb 2020
Incorporating Symmetry into Deep Dynamics Models for Improved Generalization
Rui Wang
Robin G. Walters
Rose Yu
AI4CE
52
167
0
08 Feb 2020
How to train your neural ODE: the world of Jacobian and kinetic regularization
Chris Finlay
J. Jacobsen
L. Nurbekyan
Adam M. Oberman
11
294
0
07 Feb 2020
Linearly Constrained Neural Networks
J. Hendriks
Carl Jidling
A. Wills
Thomas B. Schon
16
33
0
05 Feb 2020
Learning to Control PDEs with Differentiable Physics
Philipp Holl
V. Koltun
Nils Thuerey
AI4CE
PINN
44
185
0
21 Jan 2020
On Interpretability of Artificial Neural Networks: A Survey
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAML
AI4CE
38
300
0
08 Jan 2020
Mean-Field and Kinetic Descriptions of Neural Differential Equations
Michael Herty
T. Trimborn
G. Visconti
33
6
0
07 Jan 2020
Scalable Gradients for Stochastic Differential Equations
Xuechen Li
Ting-Kam Leonard Wong
Ricky T. Q. Chen
David Duvenaud
17
310
0
05 Jan 2020
Signatory: differentiable computations of the signature and logsignature transforms, on both CPU and GPU
Patrick Kidger
Terry Lyons
29
83
0
03 Jan 2020
Machine Learning from a Continuous Viewpoint
E. Weinan
Chao Ma
Lei Wu
23
102
0
30 Dec 2019
Discovery of Dynamics Using Linear Multistep Methods
Rachael Keller
Q. Du
31
36
0
29 Dec 2019
ODE-based Deep Network for MRI Reconstruction
A. Yazdanpanah
O. Afacan
Simon K. Warfield
OOD
10
3
0
27 Dec 2019
Previous
1
2
3
...
16
17
18
19
Next