Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.05759
Cited By
v1
v2
v3 (latest)
Insights on representational similarity in neural networks with canonical correlation
14 June 2018
Ari S. Morcos
M. Raghu
Samy Bengio
DRL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Insights on representational similarity in neural networks with canonical correlation"
22 / 22 papers shown
Title
Exploring Causes of Representational Similarity in Machine Learning Models
Zeyu Michael Li
Hung Anh Vu
Damilola Awofisayo
Emily Wenger
CML
252
0
0
20 May 2025
ReSi: A Comprehensive Benchmark for Representational Similarity Measures
Max Klabunde
Tassilo Wald
Tobias Schumacher
Klaus H. Maier-Hein
Markus Strohmaier
Adriana Iamnitchi
AI4TS
VLM
225
6
0
13 Mar 2025
Mapping fMRI Signal and Image Stimuli in an Artificial Neural Network Latent Space: Bringing Artificial and Natural Minds Together
Cesare Maria Dalbagno
Manuel de Castro Ribeiro Jardim
Mihnea Angheluţă
175
0
0
12 Mar 2025
Identifying Sub-networks in Neural Networks via Functionally Similar Representations
Tian Gao
Amit Dhurandhar
Karthikeyan N. Ramamurthy
Dennis L. Wei
89
0
0
21 Oct 2024
Measuring and Controlling Solution Degeneracy across Task-Trained Recurrent Neural Networks
Ann Huang
Satpreet H. Singh
Flavio Martinelli
Kanaka Rajan
88
0
0
04 Oct 2024
From Lazy to Rich: Exact Learning Dynamics in Deep Linear Networks
Clémentine Dominé
Nicolas Anguita
A. Proca
Lukas Braun
D. Kunin
P. Mediano
Andrew M. Saxe
115
6
0
22 Sep 2024
Relative Representations: Topological and Geometric Perspectives
Alejandro García-Castellanos
Giovanni Luca Marchetti
Danica Kragic
Martina Scolamiero
92
1
0
17 Sep 2024
When predict can also explain: few-shot prediction to select better neural latents
Kabir V. Dabholkar
Omri Barak
BDL
118
0
0
23 May 2024
Similarity of Neural Network Models: A Survey of Functional and Representational Measures
Max Klabunde
Tobias Schumacher
M. Strohmaier
Florian Lemmerich
163
75
0
10 May 2023
An Investigation of the Weight Space to Monitor the Training Progress of Neural Networks
Konstantin Schurholt
Damian Borth
84
3
0
18 Jun 2020
Gaussian Process Behaviour in Wide Deep Neural Networks
A. G. Matthews
Mark Rowland
Jiri Hron
Richard Turner
Zoubin Ghahramani
BDL
168
561
0
30 Apr 2018
An Analysis of Neural Language Modeling at Multiple Scales
Stephen Merity
N. Keskar
R. Socher
69
171
0
22 Mar 2018
On the importance of single directions for generalization
Ari S. Morcos
David Barrett
Neil C. Rabinowitz
M. Botvinick
89
333
0
19 Mar 2018
A Tutorial on Canonical Correlation Methods
Viivi Uurtio
J. Monteiro
J. Kandola
John Shawe-Taylor
D. Fernández-Reyes
Juho Rousu
CML
73
107
0
07 Nov 2017
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
139
1,100
0
01 Nov 2017
Regularizing and Optimizing LSTM Language Models
Stephen Merity
N. Keskar
R. Socher
173
1,096
0
07 Aug 2017
A Closer Look at Memorization in Deep Networks
Devansh Arpit
Stanislaw Jastrzebski
Nicolas Ballas
David M. Krueger
Emmanuel Bengio
...
Tegan Maharaj
Asja Fischer
Aaron Courville
Yoshua Bengio
Simon Lacoste-Julien
TDI
138
1,829
0
16 Jun 2017
Network Dissection: Quantifying Interpretability of Deep Visual Representations
David Bau
Bolei Zhou
A. Khosla
A. Oliva
Antonio Torralba
MILM
FAtt
158
1,526
1
19 Apr 2017
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
356
4,636
0
10 Nov 2016
Pruning Filters for Efficient ConvNets
Hao Li
Asim Kadav
Igor Durdanovic
H. Samet
H. Graf
3DPC
195
3,707
0
31 Aug 2016
Learning both Weights and Connections for Efficient Neural Networks
Song Han
Jeff Pool
J. Tran
W. Dally
CVBM
318
6,715
0
08 Jun 2015
Visualizing and Understanding Recurrent Networks
A. Karpathy
Justin Johnson
Li Fei-Fei
HAI
132
1,102
0
05 Jun 2015
1