ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.04068
  4. Cited By
A Co-Matching Model for Multi-choice Reading Comprehension

A Co-Matching Model for Multi-choice Reading Comprehension

11 June 2018
Shuohang Wang
Mo Yu
Shiyu Chang
Jing Jiang
ArXivPDFHTML

Papers citing "A Co-Matching Model for Multi-choice Reading Comprehension"

15 / 15 papers shown
Title
ElimiNet: A Model for Eliminating Options for Reading Comprehension with
  Multiple Choice Questions
ElimiNet: A Model for Eliminating Options for Reading Comprehension with Multiple Choice Questions
S. Parikh
Ananya B. Sai
Preksha Nema
Mitesh M. Khapra
47
28
0
04 Apr 2019
Evidence Aggregation for Answer Re-Ranking in Open-Domain Question
  Answering
Evidence Aggregation for Answer Re-Ranking in Open-Domain Question Answering
Shuohang Wang
Mo Yu
Jing Jiang
Wei Zhang
Xiaoxiao Guo
Shiyu Chang
Zhiguo Wang
Tim Klinger
Gerald Tesauro
Murray Campbell
RALM
69
162
0
14 Nov 2017
Dynamic Fusion Networks for Machine Reading Comprehension
Dynamic Fusion Networks for Machine Reading Comprehension
Yichong Xu
Jingjing Liu
Jianfeng Gao
Yelong Shen
Xiaodong Liu
AIMat
AI4CE
61
29
0
14 Nov 2017
RACE: Large-scale ReAding Comprehension Dataset From Examinations
RACE: Large-scale ReAding Comprehension Dataset From Examinations
Guokun Lai
Qizhe Xie
Hanxiao Liu
Yiming Yang
Eduard H. Hovy
ELM
170
1,346
0
15 Apr 2017
MS MARCO: A Human Generated MAchine Reading COmprehension Dataset
MS MARCO: A Human Generated MAchine Reading COmprehension Dataset
Payal Bajaj
Daniel Fernando Campos
Nick Craswell
Li Deng
Jianfeng Gao
...
Mir Rosenberg
Xia Song
Alina Stoica
Saurabh Tiwary
Tong Wang
RALM
137
2,723
0
28 Nov 2016
A Compare-Aggregate Model for Matching Text Sequences
A Compare-Aggregate Model for Matching Text Sequences
Shuohang Wang
Jing Jiang
58
276
0
06 Nov 2016
SQuAD: 100,000+ Questions for Machine Comprehension of Text
SQuAD: 100,000+ Questions for Machine Comprehension of Text
Pranav Rajpurkar
Jian Zhang
Konstantin Lopyrev
Percy Liang
RALM
261
8,124
0
16 Jun 2016
A Thorough Examination of the CNN/Daily Mail Reading Comprehension Task
A Thorough Examination of the CNN/Daily Mail Reading Comprehension Task
Danqi Chen
Jason Bolton
Christopher D. Manning
ELM
78
571
0
09 Jun 2016
Gated-Attention Readers for Text Comprehension
Gated-Attention Readers for Text Comprehension
Bhuwan Dhingra
Hanxiao Liu
Zhilin Yang
William W. Cohen
Ruslan Salakhutdinov
68
417
0
05 Jun 2016
A Parallel-Hierarchical Model for Machine Comprehension on Sparse Data
A Parallel-Hierarchical Model for Machine Comprehension on Sparse Data
Adam Trischler
Zheng Ye
Xingdi Yuan
Jing He
Philip Bachman
Kaheer Suleman
32
48
0
29 Mar 2016
Attention-Based Convolutional Neural Network for Machine Comprehension
Attention-Based Convolutional Neural Network for Machine Comprehension
Wenpeng Yin
Sebastian Ebert
Hinrich Schütze
47
100
0
13 Feb 2016
Learning Natural Language Inference with LSTM
Learning Natural Language Inference with LSTM
Shuohang Wang
Jing Jiang
96
446
0
30 Dec 2015
The Goldilocks Principle: Reading Children's Books with Explicit Memory
  Representations
The Goldilocks Principle: Reading Children's Books with Explicit Memory Representations
Felix Hill
Antoine Bordes
S. Chopra
Jason Weston
RALM
102
636
0
07 Nov 2015
Teaching Machines to Read and Comprehend
Teaching Machines to Read and Comprehend
Karl Moritz Hermann
Tomás Kociský
Edward Grefenstette
L. Espeholt
W. Kay
Mustafa Suleyman
Phil Blunsom
339
3,547
0
10 Jun 2015
Improved Semantic Representations From Tree-Structured Long Short-Term
  Memory Networks
Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks
Kai Sheng Tai
R. Socher
Christopher D. Manning
AIMat
135
3,118
0
28 Feb 2015
1