ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.01549
8
416

Gated-Attention Readers for Text Comprehension

5 June 2016
Bhuwan Dhingra
Hanxiao Liu
Zhilin Yang
William W. Cohen
Ruslan Salakhutdinov
ArXivPDFHTML
Abstract

In this paper we study the problem of answering cloze-style questions over documents. Our model, the Gated-Attention (GA) Reader, integrates a multi-hop architecture with a novel attention mechanism, which is based on multiplicative interactions between the query embedding and the intermediate states of a recurrent neural network document reader. This enables the reader to build query-specific representations of tokens in the document for accurate answer selection. The GA Reader obtains state-of-the-art results on three benchmarks for this task--the CNN \& Daily Mail news stories and the Who Did What dataset. The effectiveness of multiplicative interaction is demonstrated by an ablation study, and by comparing to alternative compositional operators for implementing the gated-attention. The code is available at https://github.com/bdhingra/ga-reader.

View on arXiv
Comments on this paper