ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.01261
  4. Cited By
Relational inductive biases, deep learning, and graph networks

Relational inductive biases, deep learning, and graph networks

4 June 2018
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
Mateusz Malinowski
Andrea Tacchetti
David Raposo
Adam Santoro
Ryan Faulkner
Çağlar Gülçehre
H. F. Song
A. J. Ballard
Justin Gilmer
George E. Dahl
Ashish Vaswani
Kelsey R. Allen
C. Nash
Victoria Langston
Chris Dyer
N. Heess
Daan Wierstra
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
    AI4CE
    NAI
ArXivPDFHTML

Papers citing "Relational inductive biases, deep learning, and graph networks"

50 / 1,581 papers shown
Title
Learning representations of irregular particle-detector geometry with
  distance-weighted graph networks
Learning representations of irregular particle-detector geometry with distance-weighted graph networks
S. Qasim
J. Kieseler
Y. Iiyama
M. Pierini
22
135
0
21 Feb 2019
Simplifying Graph Convolutional Networks
Simplifying Graph Convolutional Networks
Felix Wu
Tianyi Zhang
Amauri Souza
Christopher Fifty
Tao Yu
Kilian Q. Weinberger
GNN
9
3,109
0
19 Feb 2019
Learning to Control Self-Assembling Morphologies: A Study of
  Generalization via Modularity
Learning to Control Self-Assembling Morphologies: A Study of Generalization via Modularity
Deepak Pathak
Chris Xiaoxuan Lu
Trevor Darrell
Phillip Isola
Alexei A. Efros
10
128
0
14 Feb 2019
Context-Aware Visual Compatibility Prediction
Context-Aware Visual Compatibility Prediction
Guillem Cucurull
Perouz Taslakian
David Vazquez
13
99
0
10 Feb 2019
Differentiable Physics-informed Graph Networks
Differentiable Physics-informed Graph Networks
Sungyong Seo
Yan Liu
PINN
AI4CE
17
67
0
08 Feb 2019
Adaptive Posterior Learning: few-shot learning with a surprise-based
  memory module
Adaptive Posterior Learning: few-shot learning with a surprise-based memory module
Tiago Ramalho
M. Garnelo
BDL
22
77
0
07 Feb 2019
Non-Monotonic Sequential Text Generation
Non-Monotonic Sequential Text Generation
Sean Welleck
Kianté Brantley
Hal Daumé
Kyunghyun Cho
36
129
0
05 Feb 2019
Learning Context-Dependent Choice Functions
Learning Context-Dependent Choice Functions
Karlson Pfannschmidt
Pritha Gupta
Björn Haddenhorst
Eyke Hüllermeier
14
6
0
29 Jan 2019
Causal Reasoning from Meta-reinforcement Learning
Causal Reasoning from Meta-reinforcement Learning
Ishita Dasgupta
Jane X. Wang
Silvia Chiappa
Jovana Mitrović
Pedro A. Ortega
David Raposo
Edward Hughes
Peter W. Battaglia
M. Botvinick
Z. Kurth-Nelson
CML
LRM
12
120
0
23 Jan 2019
Hypergraph Convolution and Hypergraph Attention
Hypergraph Convolution and Hypergraph Attention
S. Bai
Feihu Zhang
Philip H. S. Torr
GNN
12
610
0
23 Jan 2019
Typed Graph Networks
Typed Graph Networks
Marcelo O. R. Prates
Pedro H. C. Avelar
Henrique Lemos
Marco Gori
Luís C. Lamb
GNN
23
6
0
23 Jan 2019
MONet: Unsupervised Scene Decomposition and Representation
MONet: Unsupervised Scene Decomposition and Representation
Christopher P. Burgess
Loic Matthey
Nicholas Watters
Rishabh Kabra
I. Higgins
M. Botvinick
Alexander Lerchner
OCL
24
515
0
22 Jan 2019
Incremental Reading for Question Answering
Incremental Reading for Question Answering
Samira Abnar
Tania Bedrax-Weiss
Tom Kwiatkowski
William W. Cohen
CLL
LRM
14
0
0
15 Jan 2019
Integrating Learning and Reasoning with Deep Logic Models
Integrating Learning and Reasoning with Deep Logic Models
G. Marra
Francesco Giannini
Michelangelo Diligenti
Marco Gori
NAI
24
56
0
14 Jan 2019
Using Scene Graph Context to Improve Image Generation
Using Scene Graph Context to Improve Image Generation
Subarna Tripathi
Anahita Bhiwandiwalla
A. Bastidas
Hanlin Tang
GNN
40
32
0
11 Jan 2019
All Graphs Lead to Rome: Learning Geometric and Cycle-Consistent
  Representations with Graph Convolutional Networks
All Graphs Lead to Rome: Learning Geometric and Cycle-Consistent Representations with Graph Convolutional Networks
Stephen Phillips
Kostas Daniilidis
GNN
9
13
0
07 Jan 2019
Geometrization of deep networks for the interpretability of deep
  learning systems
Geometrization of deep networks for the interpretability of deep learning systems
Xiao Dong
Ling Zhou
AI4CE
11
9
0
06 Jan 2019
LanczosNet: Multi-Scale Deep Graph Convolutional Networks
LanczosNet: Multi-Scale Deep Graph Convolutional Networks
Renjie Liao
Zhizhen Zhao
R. Urtasun
R. Zemel
GNN
11
227
0
06 Jan 2019
Graph Neural Networks with convolutional ARMA filters
Graph Neural Networks with convolutional ARMA filters
F. Bianchi
Daniele Grattarola
L. Livi
C. Alippi
GNN
25
386
0
05 Jan 2019
A Comprehensive Survey on Graph Neural Networks
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaML
GNN
AI4TS
AI4CE
150
8,350
0
03 Jan 2019
A General Deep Learning Framework for Network Reconstruction and
  Dynamics Learning
A General Deep Learning Framework for Network Reconstruction and Dynamics Learning
Zhang Zhang
Yi Zhao
Jing Liu
Shuo Wang
Ruyi Tao
Ruyue Xin
Jiang Zhang
AI4CE
26
54
0
30 Dec 2018
Scene Graph Reasoning with Prior Visual Relationship for Visual Question
  Answering
Scene Graph Reasoning with Prior Visual Relationship for Visual Question Answering
Zhuoqian Yang
Zengchang Qin
Jing Yu
Yue Hu
GNN
25
16
0
23 Dec 2018
RNNs Implicitly Implement Tensor Product Representations
RNNs Implicitly Implement Tensor Product Representations
R. Thomas McCoy
Tal Linzen
Ewan Dunbar
P. Smolensky
41
54
0
20 Dec 2018
Graph Neural Networks: A Review of Methods and Applications
Graph Neural Networks: A Review of Methods and Applications
Jie Zhou
Ganqu Cui
Shengding Hu
Zhengyan Zhang
Cheng Yang
Zhiyuan Liu
Lifeng Wang
Changcheng Li
Maosong Sun
AI4CE
GNN
28
5,397
0
20 Dec 2018
Modular meta-learning in abstract graph networks for combinatorial
  generalization
Modular meta-learning in abstract graph networks for combinatorial generalization
Ferran Alet
Maria Bauzá
Alberto Rodriguez
Tomas Lozano-Perez
L. Kaelbling
GNN
14
3
0
19 Dec 2018
Dynamic Graph Modules for Modeling Object-Object Interactions in
  Activity Recognition
Dynamic Graph Modules for Modeling Object-Object Interactions in Activity Recognition
Hao Huang
Luowei Zhou
Wei Zhang
Jason J. Corso
Chenliang Xu
11
3
0
13 Dec 2018
Deep Learning on Graphs: A Survey
Deep Learning on Graphs: A Survey
Ziwei Zhang
Peng Cui
Wenwu Zhu
GNN
27
1,319
0
11 Dec 2018
Modelling Identity Rules with Neural Networks
Modelling Identity Rules with Neural Networks
Tillman Weyde
R. Kopparti
11
9
0
06 Dec 2018
Auto-Encoding Scene Graphs for Image Captioning
Auto-Encoding Scene Graphs for Image Captioning
Xu Yang
Kaihua Tang
Hanwang Zhang
Jianfei Cai
18
692
0
06 Dec 2018
Spatio-Temporal Action Graph Networks
Spatio-Temporal Action Graph Networks
Roei Herzig
Elad Levi
Huijuan Xu
Hang Gao
Eli Brosh
Xiaolong Wang
Amir Globerson
Trevor Darrell
GNN
16
20
0
04 Dec 2018
That's Mine! Learning Ownership Relations and Norms for Robots
That's Mine! Learning Ownership Relations and Norms for Robots
Zong Xuan Tan
Jake Brawer
B. Scassellati
13
11
0
02 Dec 2018
Efficient Coarse-to-Fine Non-Local Module for the Detection of Small
  Objects
Efficient Coarse-to-Fine Non-Local Module for the Detection of Small Objects
Hila Levi
S. Ullman
ObjD
20
14
0
29 Nov 2018
Describe and Attend to Track: Learning Natural Language guided
  Structural Representation and Visual Attention for Object Tracking
Describe and Attend to Track: Learning Natural Language guided Structural Representation and Visual Attention for Object Tracking
Xiao Wang
Chenglong Li
Rui Yang
Tianzhu Zhang
Jin Tang
B. Luo
27
30
0
25 Nov 2018
Spectral Multigraph Networks for Discovering and Fusing Relationships in
  Molecules
Spectral Multigraph Networks for Discovering and Fusing Relationships in Molecules
Boris Knyazev
Xiao Lin
Mohamed R. Amer
Graham W. Taylor
GNN
18
31
0
23 Nov 2018
Contextualized Non-local Neural Networks for Sequence Learning
Contextualized Non-local Neural Networks for Sequence Learning
Pengfei Liu
Shuaichen Chang
Xuanjing Huang
Jian Tang
Jackie C.K. Cheung
6
47
0
21 Nov 2018
Scalable agent alignment via reward modeling: a research direction
Scalable agent alignment via reward modeling: a research direction
Jan Leike
David M. Krueger
Tom Everitt
Miljan Martic
Vishal Maini
Shane Legg
25
392
0
19 Nov 2018
Uncertainty quantification of molecular property prediction using
  Bayesian neural network models
Uncertainty quantification of molecular property prediction using Bayesian neural network models
Seongok Ryu
Yongchan Kwon
W. Kim
BDL
13
2
0
19 Nov 2018
Hierarchical Bipartite Graph Convolution Networks
Hierarchical Bipartite Graph Convolution Networks
Marcel Nassar
GNN
10
18
0
17 Nov 2018
Data-Efficient Graph Embedding Learning for PCB Component Detection
Data-Efficient Graph Embedding Learning for PCB Component Detection
Chia-Wen Kuo
Jacob Ashmore
David Huggins
Z. Kira
13
47
0
16 Nov 2018
Controllability, Multiplexing, and Transfer Learning in Networks using
  Evolutionary Learning
Controllability, Multiplexing, and Transfer Learning in Networks using Evolutionary Learning
R. Ooi
Chao-Han Huck Yang
Pin-Yu Chen
V. Eguíluz
N. Kiani
Hector Zenil
D. Gómez-Cabrero
Jesper N. Tegnér
14
1
0
14 Nov 2018
Image-Level Attentional Context Modeling Using Nested-Graph Neural
  Networks
Image-Level Attentional Context Modeling Using Nested-Graph Neural Networks
Guillaume Jaume
Behzad Bozorgtabar
H. K. Ekenel
Jean-Philippe Thiran
M. Gabrani
16
2
0
09 Nov 2018
Fused Gromov-Wasserstein distance for structured objects: theoretical
  foundations and mathematical properties
Fused Gromov-Wasserstein distance for structured objects: theoretical foundations and mathematical properties
David Tellez
G. Litjens
J. A. van der Laak
R. Tavenard
F. Ciompi
OT
15
121
0
07 Nov 2018
Janossy Pooling: Learning Deep Permutation-Invariant Functions for
  Variable-Size Inputs
Janossy Pooling: Learning Deep Permutation-Invariant Functions for Variable-Size Inputs
R. Murphy
Balasubramaniam Srinivasan
Vinayak A. Rao
Yun Liang
13
188
0
05 Nov 2018
Towards Sparse Hierarchical Graph Classifiers
Towards Sparse Hierarchical Graph Classifiers
Cătălina Cangea
Petar Velickovic
Nikola Jovanović
Thomas Kipf
Pietro Lió
GNN
17
257
0
03 Nov 2018
Modeling Attention Flow on Graphs
Modeling Attention Flow on Graphs
Xiaoran Xu
Songpeng Zu
Chengliang Gao
Yuan Zhang
Wei Feng
GNN
15
11
0
01 Nov 2018
DeepSphere: Efficient spherical Convolutional Neural Network with
  HEALPix sampling for cosmological applications
DeepSphere: Efficient spherical Convolutional Neural Network with HEALPix sampling for cosmological applications
Nathanael Perraudin
M. Defferrard
T. Kacprzak
R. Sgier
16
169
0
29 Oct 2018
Deep learning long-range information in undirected graphs with wave
  networks
Deep learning long-range information in undirected graphs with wave networks
Matthew K. Matlock
Arghya Datta
N. Dang
Kevin Jiang
S. Joshua Swamidass
GNN
20
15
0
29 Oct 2018
Learning sparse relational transition models
Learning sparse relational transition models
Victoria Xia
Zi Wang
L. Kaelbling
14
23
0
26 Oct 2018
Meta-modeling game for deriving theoretical-consistent,
  micro-structural-based traction-separation laws via deep reinforcement
  learning
Meta-modeling game for deriving theoretical-consistent, micro-structural-based traction-separation laws via deep reinforcement learning
Kun Wang
WaiChing Sun
13
111
0
24 Oct 2018
Streaming Graph Neural Networks
Streaming Graph Neural Networks
Yao Ma
Ziyi Guo
Z. Ren
Eric Zhao
Jiliang Tang
Dawei Yin
GNN
11
236
0
24 Oct 2018
Previous
123...303132
Next