134
574
v1v2 (latest)

Adversarial Attacks on Graph Neural Networks via Meta Learning

Stephan Günnemann
Abstract

Deep learning models for graphs have advanced the state of the art on many tasks. Despite their recent success, little is known about their robustness. We investigate training time attacks on graph neural networks for node classification that perturb the discrete graph structure. Our core principle is to use meta-gradients to solve the bilevel problem underlying training-time attacks, essentially treating the graph as a hyperparameter to optimize. Our experiments show that small graph perturbations consistently lead to a strong decrease in performance for graph convolutional networks, and even transfer to unsupervised embeddings. Remarkably, the perturbations created by our algorithm can misguide the graph neural networks such that they perform worse than a simple baseline that ignores all relational information. Our attacks do not assume any knowledge about or access to the target classifiers.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.