ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.00800
  4. Cited By
ProFlow: Learning to Predict Optical Flow

ProFlow: Learning to Predict Optical Flow

3 June 2018
Daniel Maurer
Andrés Bruhn
ArXiv (abs)PDFHTML

Papers citing "ProFlow: Learning to Predict Optical Flow"

16 / 16 papers shown
Title
FLINT: Learning-based Flow Estimation and Temporal Interpolation for Scientific Ensemble Visualization
FLINT: Learning-based Flow Estimation and Temporal Interpolation for Scientific Ensemble Visualization
Hamid Gadirov
Jos B. T. M. Roerdink
Steffen Frey
AI4CE
130
1
0
24 Feb 2025
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional
  Census Loss
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss
Simon Meister
Junhwa Hur
Stefan Roth
3DPC
92
581
0
21 Nov 2017
PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume
PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume
Deqing Sun
Xiaodong Yang
Ming-Yuan Liu
Jan Kautz
3DPC
283
2,450
0
07 Sep 2017
MirrorFlow: Exploiting Symmetries in Joint Optical Flow and Occlusion
  Estimation
MirrorFlow: Exploiting Symmetries in Joint Optical Flow and Occlusion Estimation
Junhwa Hur
Stefan Roth
74
96
0
17 Aug 2017
Optical Flow in Mostly Rigid Scenes
Optical Flow in Mostly Rigid Scenes
Jonas Wulff
Laura Sevilla-Lara
Michael J. Black
OCL
90
119
0
03 May 2017
Accurate Optical Flow via Direct Cost Volume Processing
Accurate Optical Flow via Direct Cost Volume Processing
Jia Xu
René Ranftl
V. Koltun
122
240
0
24 Apr 2017
Guided Optical Flow Learning
Guided Optical Flow Learning
Yi Zhu
Zhenzhong Lan
Shawn D. Newsam
Alexander G. Hauptmann
SSL
84
48
0
08 Feb 2017
FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks
FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks
Eddy Ilg
N. Mayer
Tonmoy Saikia
Margret Keuper
Alexey Dosovitskiy
Thomas Brox
3DPC
266
3,083
0
06 Dec 2016
Back to Basics: Unsupervised Learning of Optical Flow via Brightness
  Constancy and Motion Smoothness
Back to Basics: Unsupervised Learning of Optical Flow via Brightness Constancy and Motion Smoothness
Jason J. Yu
Adam W. Harley
Konstantinos G. Derpanis
74
410
0
20 Aug 2016
CNN-based Patch Matching for Optical Flow with Thresholded Hinge
  Embedding Loss
CNN-based Patch Matching for Optical Flow with Thresholded Hinge Embedding Loss
C. Bailer
Kiran Varanasi
Didier Stricker
79
63
0
27 Jul 2016
Optical Flow with Semantic Segmentation and Localized Layers
Optical Flow with Semantic Segmentation and Localized Layers
Laura Sevilla-Lara
Deqing Sun
Varun Jampani
Michael J. Black
147
187
0
12 Mar 2016
Unsupervised convolutional neural networks for motion estimation
Unsupervised convolutional neural networks for motion estimation
A. Ahmadi
Ioannis Patras
61
102
0
22 Jan 2016
PatchBatch: a Batch Augmented Loss for Optical Flow
PatchBatch: a Batch Augmented Loss for Optical Flow
David Gadot
Lior Wolf
81
102
0
06 Dec 2015
FlowNet: Learning Optical Flow with Convolutional Networks
FlowNet: Learning Optical Flow with Convolutional Networks
Philipp Fischer
Alexey Dosovitskiy
Eddy Ilg
Philip Häusser
C. Hazirbas
Vladimir Golkov
Patrick van der Smagt
Daniel Cremers
Thomas Brox
3DPC
349
4,181
0
26 Apr 2015
EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical
  Flow
EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow
Jérôme Revaud
Philippe Weinzaepfel
Zaïd Harchaoui
Cordelia Schmid
92
797
0
12 Jan 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,433
0
22 Dec 2014
1