ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.02295
19
48

Guided Optical Flow Learning

8 February 2017
Yi Zhu
Zhenzhong Lan
Shawn D. Newsam
Alexander G. Hauptmann
    SSL
ArXivPDFHTML
Abstract

We study the unsupervised learning of CNNs for optical flow estimation using proxy ground truth data. Supervised CNNs, due to their immense learning capacity, have shown superior performance on a range of computer vision problems including optical flow prediction. They however require the ground truth flow which is usually not accessible except on limited synthetic data. Without the guidance of ground truth optical flow, unsupervised CNNs often perform worse as they are naturally ill-conditioned. We therefore propose a novel framework in which proxy ground truth data generated from classical approaches is used to guide the CNN learning. The models are further refined in an unsupervised fashion using an image reconstruction loss. Our guided learning approach is competitive with or superior to state-of-the-art approaches on three standard benchmark datasets yet is completely unsupervised and can run in real time.

View on arXiv
Comments on this paper