ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.12114
  4. Cited By
Deep Reinforcement Learning in a Handful of Trials using Probabilistic
  Dynamics Models

Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models

30 May 2018
Kurtland Chua
Roberto Calandra
R. McAllister
Sergey Levine
    BDL
ArXivPDFHTML

Papers citing "Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models"

39 / 339 papers shown
Title
AVID: Learning Multi-Stage Tasks via Pixel-Level Translation of Human
  Videos
AVID: Learning Multi-Stage Tasks via Pixel-Level Translation of Human Videos
Laura M. Smith
Nikita Dhawan
Marvin Zhang
Pieter Abbeel
Sergey Levine
43
156
0
10 Dec 2019
Combining Q-Learning and Search with Amortized Value Estimates
Combining Q-Learning and Search with Amortized Value Estimates
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
Tobias Pfaff
T. Weber
Lars Buesing
Peter W. Battaglia
OffRL
32
47
0
05 Dec 2019
Adaptive Online Planning for Continual Lifelong Learning
Adaptive Online Planning for Continual Lifelong Learning
Kevin Lu
Igor Mordatch
Pieter Abbeel
OffRL
OnRL
CLL
11
15
0
03 Dec 2019
Scaling active inference
Scaling active inference
Alexander Tschantz
Manuel Baltieri
A. Seth
Christopher L. Buckley
BDL
AI4CE
19
68
0
24 Nov 2019
Implicit Generative Modeling for Efficient Exploration
Implicit Generative Modeling for Efficient Exploration
Neale Ratzlaff
Qinxun Bai
Fuxin Li
Wenyuan Xu
27
12
0
19 Nov 2019
Explicit Explore-Exploit Algorithms in Continuous State Spaces
Explicit Explore-Exploit Algorithms in Continuous State Spaces
Mikael Henaff
OffRL
22
31
0
01 Nov 2019
Better Exploration with Optimistic Actor-Critic
Better Exploration with Optimistic Actor-Critic
K. Ciosek
Q. Vuong
R. Loftin
Katja Hofmann
29
149
0
28 Oct 2019
Asynchronous Methods for Model-Based Reinforcement Learning
Asynchronous Methods for Model-Based Reinforcement Learning
Yunzhi Zhang
I. Clavera
Bo-Yu Tsai
Pieter Abbeel
OffRL
19
27
0
28 Oct 2019
Regularizing Model-Based Planning with Energy-Based Models
Regularizing Model-Based Planning with Energy-Based Models
Rinu Boney
Arno Solin
Alexander Ilin
22
18
0
12 Oct 2019
The Differentiable Cross-Entropy Method
The Differentiable Cross-Entropy Method
Brandon Amos
Denis Yarats
34
54
0
27 Sep 2019
Learning Generalizable Locomotion Skills with Hierarchical Reinforcement
  Learning
Learning Generalizable Locomotion Skills with Hierarchical Reinforcement Learning
Tianyu Li
Nathan Lambert
Roberto Calandra
Franziska Meier
Akshara Rai
26
40
0
26 Sep 2019
Gradient-Aware Model-based Policy Search
Gradient-Aware Model-based Policy Search
P. DÓro
Alberto Maria Metelli
Andrea Tirinzoni
Matteo Papini
Marcello Restelli
29
34
0
09 Sep 2019
Deterministic Value-Policy Gradients
Deterministic Value-Policy Gradients
Qingpeng Cai
L. Pan
Pingzhong Tang
29
1
0
09 Sep 2019
Reward Tampering Problems and Solutions in Reinforcement Learning: A
  Causal Influence Diagram Perspective
Reward Tampering Problems and Solutions in Reinforcement Learning: A Causal Influence Diagram Perspective
Tom Everitt
Marcus Hutter
Ramana Kumar
Victoria Krakovna
33
92
0
13 Aug 2019
Learning Stabilizable Nonlinear Dynamics with Contraction-Based
  Regularization
Learning Stabilizable Nonlinear Dynamics with Contraction-Based Regularization
Sumeet Singh
Spencer M. Richards
Vikas Sindhwani
Jean-Jacques E. Slotine
Marco Pavone
40
74
0
29 Jul 2019
Towards Model-based Reinforcement Learning for Industry-near
  Environments
Towards Model-based Reinforcement Learning for Industry-near Environments
Per-Arne Andersen
M. G. Olsen
Ole-Christoffer Granmo
OffRL
DRL
22
4
0
27 Jul 2019
A Unified Bellman Optimality Principle Combining Reward Maximization and
  Empowerment
A Unified Bellman Optimality Principle Combining Reward Maximization and Empowerment
Felix Leibfried
Sergio Pascual-Diaz
Jordi Grau-Moya
25
27
0
26 Jul 2019
Adaptive Prior Selection for Repertoire-based Online Adaptation in
  Robotics
Adaptive Prior Selection for Repertoire-based Online Adaptation in Robotics
Rituraj Kaushik
P. Desreumaux
Jean-Baptiste Mouret
OffRL
27
34
0
16 Jul 2019
A General Framework for Uncertainty Estimation in Deep Learning
A General Framework for Uncertainty Estimation in Deep Learning
Antonio Loquercio
Mattia Segu
Davide Scaramuzza
UQCV
BDL
OOD
31
290
0
16 Jul 2019
Data Efficient Reinforcement Learning for Legged Robots
Data Efficient Reinforcement Learning for Legged Robots
Yuxiang Yang
Ken Caluwaerts
Atil Iscen
Tingnan Zhang
Jie Tan
Vikas Sindhwani
33
139
0
08 Jul 2019
On-Policy Robot Imitation Learning from a Converging Supervisor
On-Policy Robot Imitation Learning from a Converging Supervisor
Ashwin Balakrishna
Brijen Thananjeyan
Jonathan Lee
Felix Li
Arsh Zahed
Joseph E. Gonzalez
Ken Goldberg
30
17
0
08 Jul 2019
Variational Inference MPC for Bayesian Model-based Reinforcement
  Learning
Variational Inference MPC for Bayesian Model-based Reinforcement Learning
Masashi Okada
T. Taniguchi
43
73
0
08 Jul 2019
Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a
  Latent Variable Model
Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a Latent Variable Model
Alex X. Lee
Anusha Nagabandi
Pieter Abbeel
Sergey Levine
OffRL
BDL
36
373
0
01 Jul 2019
Exploring Model-based Planning with Policy Networks
Exploring Model-based Planning with Policy Networks
Tingwu Wang
Jimmy Ba
42
147
0
20 Jun 2019
Search on the Replay Buffer: Bridging Planning and Reinforcement
  Learning
Search on the Replay Buffer: Bridging Planning and Reinforcement Learning
Benjamin Eysenbach
Ruslan Salakhutdinov
Sergey Levine
OffRL
32
286
0
12 Jun 2019
Self-Supervised Exploration via Disagreement
Self-Supervised Exploration via Disagreement
Deepak Pathak
Dhiraj Gandhi
Abhinav Gupta
SSL
35
375
0
10 Jun 2019
Estimating Risk and Uncertainty in Deep Reinforcement Learning
Estimating Risk and Uncertainty in Deep Reinforcement Learning
W. Clements
B. V. Delft
Benoît-Marie Robaglia
Reda Bahi Slaoui
Sébastien Toth
35
96
0
23 May 2019
Planning with Expectation Models
Planning with Expectation Models
Yi Wan
M. Zaheer
Adam White
Martha White
R. Sutton
OffRL
21
23
0
02 Apr 2019
Deep Variational Koopman Models: Inferring Koopman Observations for
  Uncertainty-Aware Dynamics Modeling and Control
Deep Variational Koopman Models: Inferring Koopman Observations for Uncertainty-Aware Dynamics Modeling and Control
Jeremy Morton
F. Witherden
Mykel J Kochenderfer
29
46
0
26 Feb 2019
An Online Learning Approach to Model Predictive Control
An Online Learning Approach to Model Predictive Control
Nolan Wagener
Ching-An Cheng
Jacob Sacks
Byron Boots
36
73
0
24 Feb 2019
Model-Predictive Policy Learning with Uncertainty Regularization for
  Driving in Dense Traffic
Model-Predictive Policy Learning with Uncertainty Regularization for Driving in Dense Traffic
Mikael Henaff
A. Canziani
Yann LeCun
OOD
30
122
0
08 Jan 2019
Residual Policy Learning
Residual Policy Learning
Tom Silver
Kelsey R. Allen
J. Tenenbaum
L. Kaelbling
OffRL
26
173
0
15 Dec 2018
Model-Based Active Exploration
Model-Based Active Exploration
Pranav Shyam
Wojciech Ja'skowski
Faustino J. Gomez
30
179
0
29 Oct 2018
PPO-CMA: Proximal Policy Optimization with Covariance Matrix Adaptation
PPO-CMA: Proximal Policy Optimization with Covariance Matrix Adaptation
Perttu Hämäläinen
Amin Babadi
Xiaoxiao Ma
J. Lehtinen
32
62
0
05 Oct 2018
Model-Based Reinforcement Learning via Meta-Policy Optimization
Model-Based Reinforcement Learning via Meta-Policy Optimization
I. Clavera
Jonas Rothfuss
John Schulman
Yasuhiro Fujita
Tamim Asfour
Pieter Abbeel
30
225
0
14 Sep 2018
A survey on policy search algorithms for learning robot controllers in a
  handful of trials
A survey on policy search algorithms for learning robot controllers in a handful of trials
Konstantinos Chatzilygeroudis
Vassilis Vassiliades
F. Stulp
Sylvain Calinon
Jean-Baptiste Mouret
17
155
0
06 Jul 2018
Unsupervised Meta-Learning for Reinforcement Learning
Unsupervised Meta-Learning for Reinforcement Learning
Abhishek Gupta
Benjamin Eysenbach
Chelsea Finn
Sergey Levine
SSL
OffRL
54
106
0
12 Jun 2018
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
278
5,695
0
05 Dec 2016
Manifold Gaussian Processes for Regression
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
99
271
0
24 Feb 2014
Previous
1234567