ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.12114
  4. Cited By
Deep Reinforcement Learning in a Handful of Trials using Probabilistic
  Dynamics Models

Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models

30 May 2018
Kurtland Chua
Roberto Calandra
R. McAllister
Sergey Levine
    BDL
ArXivPDFHTML

Papers citing "Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models"

50 / 339 papers shown
Title
Faithful Heteroscedastic Regression with Neural Networks
Faithful Heteroscedastic Regression with Neural Networks
Andrew Stirn
H. Wessels
Megan D. Schertzer
L. Pereira
Neville E. Sanjana
David A. Knowles
UQCV
30
15
0
18 Dec 2022
Planning Immediate Landmarks of Targets for Model-Free Skill Transfer
  across Agents
Planning Immediate Landmarks of Targets for Model-Free Skill Transfer across Agents
Minghuan Liu
Zhengbang Zhu
Menghui Zhu
Yuzheng Zhuang
Weinan Zhang
Jianye Hao
20
0
0
18 Dec 2022
Latent Variable Representation for Reinforcement Learning
Latent Variable Representation for Reinforcement Learning
Tongzheng Ren
Chenjun Xiao
Tianjun Zhang
Na Li
Zhaoran Wang
Sujay Sanghavi
Dale Schuurmans
Bo Dai
OffRL
35
10
0
17 Dec 2022
A Simple Decentralized Cross-Entropy Method
A Simple Decentralized Cross-Entropy Method
Zichen Zhang
Jun Jin
Martin Jägersand
Jun Luo
Dale Schuurmans
18
8
0
16 Dec 2022
Real-time Sampling-based Model Predictive Control based on Reverse
  Kullback-Leibler Divergence and Its Adaptive Acceleration
Real-time Sampling-based Model Predictive Control based on Reverse Kullback-Leibler Divergence and Its Adaptive Acceleration
Taisuke Kobayashi
Kota Fukumoto
29
4
0
08 Dec 2022
Model-based trajectory stitching for improved behavioural cloning and
  its applications
Model-based trajectory stitching for improved behavioural cloning and its applications
Charles A. Hepburn
Giovanni Montana
OffRL
37
5
0
08 Dec 2022
PRISM: Probabilistic Real-Time Inference in Spatial World Models
PRISM: Probabilistic Real-Time Inference in Spatial World Models
Atanas Mirchev
Baris Kayalibay
Ahmed Agha
Patrick van der Smagt
Daniel Cremers
Justin Bayer
VGen
44
0
0
06 Dec 2022
Learning to Optimize in Model Predictive Control
Learning to Optimize in Model Predictive Control
Jacob Sacks
Byron Boots
37
22
0
05 Dec 2022
Learning Sampling Distributions for Model Predictive Control
Learning Sampling Distributions for Model Predictive Control
Jacob Sacks
Byron Boots
21
21
0
05 Dec 2022
Domain Generalization for Robust Model-Based Offline Reinforcement
  Learning
Domain Generalization for Robust Model-Based Offline Reinforcement Learning
Alan Clark
Shoaib Ahmed Siddiqui
Robert Kirk
Usman Anwar
Stephen Chung
David M. Krueger
OOD
OffRL
39
0
0
27 Nov 2022
Efficient Exploration using Model-Based Quality-Diversity with Gradients
Efficient Exploration using Model-Based Quality-Diversity with Gradients
Bryan Lim
Manon Flageat
Antoine Cully
28
4
0
22 Nov 2022
Model-based Trajectory Stitching for Improved Offline Reinforcement
  Learning
Model-based Trajectory Stitching for Improved Offline Reinforcement Learning
Charles A. Hepburn
Giovanni Montana
OffRL
37
13
0
21 Nov 2022
Q-Ensemble for Offline RL: Don't Scale the Ensemble, Scale the Batch
  Size
Q-Ensemble for Offline RL: Don't Scale the Ensemble, Scale the Batch Size
Alexander Nikulin
Vladislav Kurenkov
Denis Tarasov
Dmitry Akimov
Sergey Kolesnikov
OffRL
44
14
0
20 Nov 2022
Learning Modular Robot Locomotion from Demonstrations
Learning Modular Robot Locomotion from Demonstrations
Julian Whitman
Howie Choset
36
1
0
31 Oct 2022
Learning Modular Robot Visual-motor Locomotion Policies
Learning Modular Robot Visual-motor Locomotion Policies
Julian Whitman
Howie Choset
28
1
0
31 Oct 2022
Adaptive Behavior Cloning Regularization for Stable Offline-to-Online
  Reinforcement Learning
Adaptive Behavior Cloning Regularization for Stable Offline-to-Online Reinforcement Learning
Yi Zhao
Rinu Boney
Alexander Ilin
Arno Solin
Joni Pajarinen
OffRL
OnRL
28
39
0
25 Oct 2022
Learning General World Models in a Handful of Reward-Free Deployments
Learning General World Models in a Handful of Reward-Free Deployments
Yingchen Xu
Jack Parker-Holder
Aldo Pacchiano
Philip J. Ball
Oleh Rybkin
Stephen J. Roberts
Tim Rocktaschel
Edward Grefenstette
OffRL
62
9
0
23 Oct 2022
Random Actions vs Random Policies: Bootstrapping Model-Based Direct
  Policy Search
Random Actions vs Random Policies: Bootstrapping Model-Based Direct Policy Search
Elias Hanna
Alexandre Coninx
Stéphane Doncieux
OffRL
36
0
0
21 Oct 2022
Learning Robust Dynamics through Variational Sparse Gating
Learning Robust Dynamics through Variational Sparse Gating
A. Jain
Shivakanth Sujit
S. Joshi
Vincent Michalski
Danijar Hafner
Samira Ebrahimi Kahou
27
8
0
21 Oct 2022
Model-based Lifelong Reinforcement Learning with Bayesian Exploration
Model-based Lifelong Reinforcement Learning with Bayesian Exploration
Haotian Fu
Shangqun Yu
Michael Littman
George Konidaris
BDL
OffRL
26
12
0
20 Oct 2022
Safe Policy Improvement in Constrained Markov Decision Processes
Safe Policy Improvement in Constrained Markov Decision Processes
Luigi Berducci
Radu Grosu
OffRL
41
2
0
20 Oct 2022
On Uncertainty in Deep State Space Models for Model-Based Reinforcement
  Learning
On Uncertainty in Deep State Space Models for Model-Based Reinforcement Learning
P. Becker
Gerhard Neumann
32
9
0
17 Oct 2022
When to Update Your Model: Constrained Model-based Reinforcement
  Learning
When to Update Your Model: Constrained Model-based Reinforcement Learning
Tianying Ji
Yu-Juan Luo
Gang Hua
Mingxuan Jing
Fengxiang He
Wen-bing Huang
29
18
0
15 Oct 2022
Benchmarking Reinforcement Learning Techniques for Autonomous Navigation
Benchmarking Reinforcement Learning Techniques for Autonomous Navigation
Zifan Xu
Bo Liu
Xuesu Xiao
Anirudh Nair
Peter Stone
39
42
0
10 Oct 2022
Inferring Smooth Control: Monte Carlo Posterior Policy Iteration with
  Gaussian Processes
Inferring Smooth Control: Monte Carlo Posterior Policy Iteration with Gaussian Processes
Joe Watson
Jan Peters
34
16
0
07 Oct 2022
Exploration via Planning for Information about the Optimal Trajectory
Exploration via Planning for Information about the Optimal Trajectory
Viraj Mehta
I. Char
J. Abbate
R. Conlin
M. Boyer
Stefano Ermon
J. Schneider
Willie Neiswanger
OffRL
32
6
0
06 Oct 2022
RAP: Risk-Aware Prediction for Robust Planning
RAP: Risk-Aware Prediction for Robust Planning
Haruki Nishimura
Jean Mercat
Blake Wulfe
R. McAllister
Adrien Gaidon
OOD
54
18
0
04 Oct 2022
Reward Learning with Trees: Methods and Evaluation
Reward Learning with Trees: Methods and Evaluation
Tom Bewley
J. Lawry
Arthur G. Richards
R. Craddock
Ian Henderson
31
1
0
03 Oct 2022
S2P: State-conditioned Image Synthesis for Data Augmentation in Offline
  Reinforcement Learning
S2P: State-conditioned Image Synthesis for Data Augmentation in Offline Reinforcement Learning
Daesol Cho
D. Shim
H. J. Kim
OffRL
47
11
0
30 Sep 2022
Does Zero-Shot Reinforcement Learning Exist?
Does Zero-Shot Reinforcement Learning Exist?
Ahmed Touati
Jérémy Rapin
Yann Ollivier
OffRL
42
39
0
29 Sep 2022
Training Efficient Controllers via Analytic Policy Gradient
Training Efficient Controllers via Analytic Policy Gradient
Nina Wiedemann
Valentin Wüest
Antonio Loquercio
M. Müller
Dario Floreano
Davide Scaramuzza
OffRL
30
18
0
26 Sep 2022
Open-Ended Diverse Solution Discovery with Regulated Behavior Patterns
  for Cross-Domain Adaptation
Open-Ended Diverse Solution Discovery with Regulated Behavior Patterns for Cross-Domain Adaptation
Kang Xu
Yan Ma
Bingsheng Wei
Wei Li
42
3
0
24 Sep 2022
Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels
Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels
Sai Rajeswar
Pietro Mazzaglia
Tim Verbelen
Alexandre Piché
Bart Dhoedt
Rameswar Panda
Alexandre Lacoste
SSL
33
21
0
24 Sep 2022
Deep Model Predictive Variable Impedance Control
Deep Model Predictive Variable Impedance Control
Akhil S. Anand
Fares J. Abu-Dakka
J. Gravdahl
31
11
0
20 Sep 2022
Reducing Variance in Temporal-Difference Value Estimation via Ensemble
  of Deep Networks
Reducing Variance in Temporal-Difference Value Estimation via Ensemble of Deep Networks
Litian Liang
Yaosheng Xu
Stephen Marcus McAleer
Dailin Hu
Alexander Ihler
Pieter Abbeel
Roy Fox
OOD
32
17
0
16 Sep 2022
Model-based Reinforcement Learning with Multi-step Plan Value Estimation
Model-based Reinforcement Learning with Multi-step Plan Value Estimation
Hao-Chu Lin
Yihao Sun
Jiajin Zhang
Yang Yu
OffRL
42
7
0
12 Sep 2022
Conformal Methods for Quantifying Uncertainty in Spatiotemporal Data: A
  Survey
Conformal Methods for Quantifying Uncertainty in Spatiotemporal Data: A Survey
S. Sun
AI4CE
48
10
0
08 Sep 2022
Variational Inference for Model-Free and Model-Based Reinforcement
  Learning
Variational Inference for Model-Free and Model-Based Reinforcement Learning
Felix Leibfried
OffRL
23
0
0
04 Sep 2022
Spectral Decomposition Representation for Reinforcement Learning
Spectral Decomposition Representation for Reinforcement Learning
Tongzheng Ren
Tianjun Zhang
Lisa Lee
Joseph E. Gonzalez
Dale Schuurmans
Bo Dai
OffRL
42
27
0
19 Aug 2022
Backward Imitation and Forward Reinforcement Learning via Bi-directional
  Model Rollouts
Backward Imitation and Forward Reinforcement Learning via Bi-directional Model Rollouts
Yuxin Pan
Fangzhen Lin
OffRL
25
3
0
04 Aug 2022
Safe and Efficient Exploration of Human Models During Human-Robot
  Interaction
Safe and Efficient Exploration of Human Models During Human-Robot Interaction
Ravi Pandya
Changliu Liu
24
6
0
01 Aug 2022
Making Linear MDPs Practical via Contrastive Representation Learning
Making Linear MDPs Practical via Contrastive Representation Learning
Tianjun Zhang
Tongzheng Ren
Mengjiao Yang
Joseph E. Gonzalez
Dale Schuurmans
Bo Dai
27
44
0
14 Jul 2022
Masked World Models for Visual Control
Masked World Models for Visual Control
Younggyo Seo
Danijar Hafner
Hao Liu
Fangchen Liu
Stephen James
Kimin Lee
Pieter Abbeel
OffRL
93
147
0
28 Jun 2022
Low Emission Building Control with Zero-Shot Reinforcement Learning
Low Emission Building Control with Zero-Shot Reinforcement Learning
Scott Jeen
Alessandro Abate
Jonathan M. Cullen
AI4CE
25
5
0
28 Jun 2022
DayDreamer: World Models for Physical Robot Learning
DayDreamer: World Models for Physical Robot Learning
Philipp Wu
Alejandro Escontrela
Danijar Hafner
Ken Goldberg
Pieter Abbeel
63
278
0
28 Jun 2022
A Survey on Model-based Reinforcement Learning
A Survey on Model-based Reinforcement Learning
Fan Luo
Tian Xu
Hang Lai
Xiong-Hui Chen
Weinan Zhang
Yang Yu
OffRL
LRM
56
101
0
19 Jun 2022
Model-based RL with Optimistic Posterior Sampling: Structural Conditions
  and Sample Complexity
Model-based RL with Optimistic Posterior Sampling: Structural Conditions and Sample Complexity
Alekh Agarwal
Tong Zhang
55
22
0
15 Jun 2022
Critic Sequential Monte Carlo
Critic Sequential Monte Carlo
Vasileios Lioutas
J. Lavington
Justice Sefas
Matthew Niedoba
Yunpeng Liu
Berend Zwartsenberg
Setareh Dabiri
Frank Wood
Adam Scibior
55
7
0
30 May 2022
Offline Policy Comparison with Confidence: Benchmarks and Baselines
Offline Policy Comparison with Confidence: Benchmarks and Baselines
Anurag Koul
Mariano Phielipp
Alan Fern
OffRL
32
0
0
22 May 2022
Planning with Diffusion for Flexible Behavior Synthesis
Planning with Diffusion for Flexible Behavior Synthesis
Michael Janner
Yilun Du
J. Tenenbaum
Sergey Levine
DiffM
204
639
0
20 May 2022
Previous
1234567
Next