Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.11783
Cited By
To Trust Or Not To Trust A Classifier
30 May 2018
Heinrich Jiang
Been Kim
Melody Y. Guan
Maya R. Gupta
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"To Trust Or Not To Trust A Classifier"
21 / 21 papers shown
Title
Unveiling AI's Blind Spots: An Oracle for In-Domain, Out-of-Domain, and Adversarial Errors
Shuangpeng Han
Mengmi Zhang
293
0
0
03 Oct 2024
Anomalous Example Detection in Deep Learning: A Survey
Saikiran Bulusu
B. Kailkhura
Yue Liu
P. Varshney
D. Song
AAML
103
47
0
16 Mar 2020
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning
Nicolas Papernot
Patrick McDaniel
OOD
AAML
108
505
0
13 Mar 2018
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
216
5,774
0
14 Jun 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDL
OOD
UD
UQCV
PER
296
4,667
0
15 Mar 2017
Density Level Set Estimation on Manifolds with DBSCAN
Heinrich Jiang
42
32
0
10 Mar 2017
Online Learning with Abstention
Corinna Cortes
Giulia DeSalvo
Claudio Gentile
M. Mohri
Scott Yang
97
47
0
09 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
535
5,748
0
05 Dec 2016
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
111
3,420
0
07 Oct 2016
On the Safety of Machine Learning: Cyber-Physical Systems, Decision Sciences, and Data Products
Kush R. Varshney
H. Alemzadeh
59
223
0
05 Oct 2016
Concrete Problems in AI Safety
Dario Amodei
C. Olah
Jacob Steinhardt
Paul Christiano
John Schulman
Dandelion Mané
153
2,371
0
21 Jun 2016
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
539
27,231
0
02 Dec 2015
Efficient Learning by Directed Acyclic Graph For Resource Constrained Prediction
Joseph Wang
K. Trapeznikov
Venkatesh Saligrama
45
49
0
26 Oct 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
526
9,233
0
06 Jun 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
189
18,922
0
20 Dec 2014
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
136
3,261
0
05 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.0K
99,991
0
04 Sep 2014
Cluster Trees on Manifolds
Sivaraman Balakrishnan
S. Narayanan
Alessandro Rinaldo
Aarti Singh
Larry A. Wasserman
47
45
0
24 Jul 2013
Minimax Manifold Estimation
Christopher R. Genovese
M. Perone-Pacifico
I. Verdinelli
Larry A. Wasserman
72
128
0
04 Jul 2010
Adaptive Hausdorff estimation of density level sets
Aarti Singh
Clayton Scott
Robert D. Nowak
83
84
0
25 Aug 2009
Generalized density clustering
Alessandro Rinaldo
Larry A. Wasserman
80
163
0
20 Jul 2009
1