86
128

Minimax Manifold Estimation

Abstract

We find the minimax rate of convergence in Hausdorff distance for estimating a manifold M of dimension d embedded in R^D given a noisy sample from the manifold. We assume that the manifold satisfies a smoothness condition and that the noise distribution has compact support. We show that the optimal rate of convergence is n^{-2/(2+d)}. Thus, the minimax rate depends only on the dimension of the manifold, not on the dimension of the space in which M is embedded.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.