ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.09076
  4. Cited By
Constrained Graph Variational Autoencoders for Molecule Design

Constrained Graph Variational Autoencoders for Molecule Design

23 May 2018
Qi Liu
Miltiadis Allamanis
Marc Brockschmidt
Alexander L. Gaunt
    BDL
ArXivPDFHTML

Papers citing "Constrained Graph Variational Autoencoders for Molecule Design"

43 / 93 papers shown
Title
Barking up the right tree: an approach to search over molecule synthesis
  DAGs
Barking up the right tree: an approach to search over molecule synthesis DAGs
John Bradshaw
Brooks Paige
Matt J. Kusner
Marwin H. S. Segler
José Miguel Hernández-Lobato
53
56
0
21 Dec 2020
Graph Neural Networks: Taxonomy, Advances and Trends
Graph Neural Networks: Taxonomy, Advances and Trends
Yu Zhou
Haixia Zheng
Xin Huang
Shufeng Hao
Dengao Li
Jumin Zhao
AI4TS
25
116
0
16 Dec 2020
Molecular graph generation with Graph Neural Networks
Molecular graph generation with Graph Neural Networks
P. Bongini
Monica Bianchini
F. Scarselli
GNN
28
136
0
14 Dec 2020
RetroGNN: Approximating Retrosynthesis by Graph Neural Networks for De
  Novo Drug Design
RetroGNN: Approximating Retrosynthesis by Graph Neural Networks for De Novo Drug Design
Cheng-Hao Liu
Maksym Korablyov
Stanislaw Jastrzebski
Pawel Wlodarczyk-Pruszynski
Yoshua Bengio
Marwin H. S. Segler
GNN
32
16
0
25 Nov 2020
Symmetry-Aware Actor-Critic for 3D Molecular Design
Symmetry-Aware Actor-Critic for 3D Molecular Design
G. Simm
Robert Pinsler
Gábor Csányi
José Miguel Hernández-Lobato
AI4CE
29
64
0
25 Nov 2020
Dirichlet Graph Variational Autoencoder
Dirichlet Graph Variational Autoencoder
Jia Li
Tomas Yu
Jiajin Li
Honglei Zhang
Kangfei Zhao
Yu Rong
Hong Cheng
Junzhou Huang
BDL
24
52
0
09 Oct 2020
3DMolNet: A Generative Network for Molecular Structures
3DMolNet: A Generative Network for Molecular Structures
V. Nesterov
Mario Wieser
Volker Roth
AI4CE
173
33
0
08 Oct 2020
A Systematic Survey on Deep Generative Models for Graph Generation
A Systematic Survey on Deep Generative Models for Graph Generation
Xiaojie Guo
Liang Zhao
MedIm
44
147
0
13 Jul 2020
Guiding Deep Molecular Optimization with Genetic Exploration
Guiding Deep Molecular Optimization with Genetic Exploration
Sungsoo Ahn
Junsup Kim
Hankook Lee
Jinwoo Shin
29
70
0
04 Jul 2020
MoFlow: An Invertible Flow Model for Generating Molecular Graphs
MoFlow: An Invertible Flow Model for Generating Molecular Graphs
Chengxi Zang
Fei Wang
BDL
28
280
0
17 Jun 2020
Categorical Normalizing Flows via Continuous Transformations
Categorical Normalizing Flows via Continuous Transformations
Phillip Lippe
E. Gavves
BDL
21
43
0
17 Jun 2020
Copy that! Editing Sequences by Copying Spans
Copy that! Editing Sequences by Copying Spans
Sheena Panthaplackel
Miltiadis Allamanis
Marc Brockschmidt
BDL
21
28
0
08 Jun 2020
Deep Learning and Knowledge-Based Methods for Computer Aided Molecular
  Design -- Toward a Unified Approach: State-of-the-Art and Future Directions
Deep Learning and Knowledge-Based Methods for Computer Aided Molecular Design -- Toward a Unified Approach: State-of-the-Art and Future Directions
Abdulelah S. Alshehri
R. Gani
Fengqi You
AI4CE
30
83
0
18 May 2020
Machine Learning on Graphs: A Model and Comprehensive Taxonomy
Machine Learning on Graphs: A Model and Comprehensive Taxonomy
Ines Chami
Sami Abu-El-Haija
Bryan Perozzi
Christopher Ré
Kevin Patrick Murphy
22
285
0
07 May 2020
A Graph to Graphs Framework for Retrosynthesis Prediction
A Graph to Graphs Framework for Retrosynthesis Prediction
Chence Shi
Minkai Xu
Hongyu Guo
Ming Zhang
Jian Tang
19
151
0
28 Mar 2020
Characterizing and Avoiding Problematic Global Optima of Variational
  Autoencoders
Characterizing and Avoiding Problematic Global Optima of Variational Autoencoders
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
DRL
21
4
0
17 Mar 2020
Reinforcement Learning for Molecular Design Guided by Quantum Mechanics
Reinforcement Learning for Molecular Design Guided by Quantum Mechanics
G. Simm
Robert Pinsler
José Miguel Hernández-Lobato
AI4CE
21
82
0
18 Feb 2020
Graph Deconvolutional Generation
Graph Deconvolutional Generation
Daniel Flam-Shepherd
Tony C Wu
Alán Aspuru-Guzik
BDL
28
31
0
14 Feb 2020
Hierarchical Generation of Molecular Graphs using Structural Motifs
Hierarchical Generation of Molecular Graphs using Structural Motifs
Wengong Jin
Regina Barzilay
Tommi Jaakkola
21
279
0
08 Feb 2020
FastGAE: Scalable Graph Autoencoders with Stochastic Subgraph Decoding
FastGAE: Scalable Graph Autoencoders with Stochastic Subgraph Decoding
Guillaume Salha-Galvan
Romain Hennequin
Jean-Baptiste Remy
Manuel Moussallam
Michalis Vazirgiannis
GNN
BDL
29
6
0
05 Feb 2020
GraphGen: A Scalable Approach to Domain-agnostic Labeled Graph
  Generation
GraphGen: A Scalable Approach to Domain-agnostic Labeled Graph Generation
Nikhil Goyal
Harsh Jain
Sayan Ranu
18
91
0
22 Jan 2020
Adversarial Attack on Community Detection by Hiding Individuals
Adversarial Attack on Community Detection by Hiding Individuals
Jia Li
Honglei Zhang
Zhichao Han
Yu Rong
Hong Cheng
Junzhou Huang
AAML
25
87
0
22 Jan 2020
A Gentle Introduction to Deep Learning for Graphs
A Gentle Introduction to Deep Learning for Graphs
D. Bacciu
Federico Errica
Alessio Micheli
Marco Podda
AI4CE
GNN
51
277
0
29 Dec 2019
CORE: Automatic Molecule Optimization Using Copy & Refine Strategy
CORE: Automatic Molecule Optimization Using Copy & Refine Strategy
Tianfan Fu
Cao Xiao
Jimeng Sun
31
63
0
23 Nov 2019
Hyperbolic Graph Neural Networks
Hyperbolic Graph Neural Networks
Qi Liu
Maximilian Nickel
Douwe Kiela
AI4CE
GNN
45
371
0
28 Oct 2019
Disentangling Interpretable Generative Parameters of Random and
  Real-World Graphs
Disentangling Interpretable Generative Parameters of Random and Real-World Graphs
Niklas Stoehr
Emine Yilmaz
Marc Brockschmidt
Jan Stuehmer
BDL
CML
DRL
27
14
0
12 Oct 2019
Efficient Graph Generation with Graph Recurrent Attention Networks
Efficient Graph Generation with Graph Recurrent Attention Networks
Renjie Liao
Yujia Li
Yang Song
Shenlong Wang
C. Nash
William L. Hamilton
David Duvenaud
R. Urtasun
R. Zemel
GNN
25
326
0
02 Oct 2019
Augmenting Genetic Algorithms with Deep Neural Networks for Exploring
  the Chemical Space
Augmenting Genetic Algorithms with Deep Neural Networks for Exploring the Chemical Space
AkshatKumar Nigam
Pascal Friederich
Mario Krenn
Alán Aspuru-Guzik
AI4CE
27
128
0
25 Sep 2019
A Generative Model for Molecular Distance Geometry
A Generative Model for Molecular Distance Geometry
G. Simm
José Miguel Hernández-Lobato
GAN
29
107
0
25 Sep 2019
Neural Variational Inference For Estimating Uncertainty in Knowledge
  Graph Embeddings
Neural Variational Inference For Estimating Uncertainty in Knowledge Graph Embeddings
Alexander I. Cowen-Rivers
Pasquale Minervini
Tim Rocktaschel
Matko Bosnjak
Sebastian Riedel
Jun Wang
BDL
31
4
0
12 Jun 2019
Symmetry-adapted generation of 3d point sets for the targeted discovery
  of molecules
Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules
Niklas W. A. Gebauer
M. Gastegger
Kristof T. Schütt
40
201
0
02 Jun 2019
Self-Referencing Embedded Strings (SELFIES): A 100% robust molecular
  string representation
Self-Referencing Embedded Strings (SELFIES): A 100% robust molecular string representation
Mario Krenn
Florian Hase
AkshatKumar Nigam
Pascal Friederich
Alán Aspuru-Guzik
18
70
0
31 May 2019
MolecularRNN: Generating realistic molecular graphs with optimized
  properties
MolecularRNN: Generating realistic molecular graphs with optimized properties
Mariya Popova
Mykhailo Shvets
Junier Oliva
Olexandr Isayev
GNN
35
164
0
31 May 2019
D-VAE: A Variational Autoencoder for Directed Acyclic Graphs
D-VAE: A Variational Autoencoder for Directed Acyclic Graphs
Muhan Zhang
Shali Jiang
Zhicheng Cui
Roman Garnett
Yixin Chen
GNN
BDL
CML
32
196
0
24 Apr 2019
Tiered Latent Representations and Latent Spaces for Molecular Graphs
Tiered Latent Representations and Latent Spaces for Molecular Graphs
Daniel T. Chang
AI4CE
BDL
35
7
0
21 Mar 2019
Learning to Sample Hard Instances for Graph Algorithms
Learning to Sample Hard Instances for Graph Algorithms
Ryoma Sato
M. Yamada
H. Kashima
19
1
0
26 Feb 2019
A Degeneracy Framework for Scalable Graph Autoencoders
A Degeneracy Framework for Scalable Graph Autoencoders
Guillaume Salha-Galvan
Romain Hennequin
Viet-Anh Tran
Michalis Vazirgiannis
GNN
34
36
0
23 Feb 2019
Deep Learning on Attributed Graphs: A Journey from Graphs to Their
  Embeddings and Back
Deep Learning on Attributed Graphs: A Journey from Graphs to Their Embeddings and Back
M. Simonovsky
BDL
GNN
29
1
0
24 Jan 2019
Hypergraph Convolution and Hypergraph Attention
Hypergraph Convolution and Hypergraph Attention
S. Bai
Feihu Zhang
Philip Torr
GNN
26
612
0
23 Jan 2019
Learning Multimodal Graph-to-Graph Translation for Molecular
  Optimization
Learning Multimodal Graph-to-Graph Translation for Molecular Optimization
Wengong Jin
Kevin Kaichuang Yang
Regina Barzilay
Tommi Jaakkola
33
224
0
03 Dec 2018
GuacaMol: Benchmarking Models for De Novo Molecular Design
GuacaMol: Benchmarking Models for De Novo Molecular Design
Nathan Brown
Marco Fiscato
Marwin H. S. Segler
Alain C. Vaucher
ELM
44
692
0
22 Nov 2018
Learning to Represent Edits
Learning to Represent Edits
Pengcheng Yin
Graham Neubig
Miltiadis Allamanis
Marc Brockschmidt
Alexander L. Gaunt
KELM
23
112
0
31 Oct 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
233
1,340
0
12 Feb 2018
Previous
12