ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.07933
17
87

Adversarial Attack on Community Detection by Hiding Individuals

22 January 2020
Jia Li
Honglei Zhang
Zhichao Han
Yu Rong
Hong Cheng
Junzhou Huang
    AAML
ArXivPDFHTML
Abstract

It has been demonstrated that adversarial graphs, i.e., graphs with imperceptible perturbations added, can cause deep graph models to fail on node/graph classification tasks. In this paper, we extend adversarial graphs to the problem of community detection which is much more difficult. We focus on black-box attack and aim to hide targeted individuals from the detection of deep graph community detection models, which has many applications in real-world scenarios, for example, protecting personal privacy in social networks and understanding camouflage patterns in transaction networks. We propose an iterative learning framework that takes turns to update two modules: one working as the constrained graph generator and the other as the surrogate community detection model. We also find that the adversarial graphs generated by our method can be transferred to other learning based community detection models.

View on arXiv
Comments on this paper