43
9

Optimal Decision Tree Policies for Markov Decision Processes

Abstract

Interpretability of reinforcement learning policies is essential for many real-world tasks but learning such interpretable policies is a hard problem. Particularly rule-based policies such as decision trees and rules lists are difficult to optimize due to their non-differentiability. While existing techniques can learn verifiable decision tree policies there is no guarantee that the learners generate a decision that performs optimally. In this work, we study the optimization of size-limited decision trees for Markov Decision Processes (MPDs) and propose OMDTs: Optimal MDP Decision Trees. Given a user-defined size limit and MDP formulation OMDT directly maximizes the expected discounted return for the decision tree using Mixed-Integer Linear Programming. By training optimal decision tree policies for different MDPs we empirically study the optimality gap for existing imitation learning techniques and find that they perform sub-optimally. We show that this is due to an inherent shortcoming of imitation learning, namely that complex policies cannot be represented using size-limited trees. In such cases, it is better to directly optimize the tree for expected return. While there is generally a trade-off between the performance and interpretability of machine learning models, we find that OMDTs limited to a depth of 3 often perform close to the optimal limit.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.