Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.07472
Cited By
Deep Dynamical Modeling and Control of Unsteady Fluid Flows
18 May 2018
Jeremy Morton
F. Witherden
A. Jameson
Mykel J. Kochenderfer
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Dynamical Modeling and Control of Unsteady Fluid Flows"
34 / 34 papers shown
Title
Bridging Autoencoders and Dynamic Mode Decomposition for Reduced-order Modeling and Control of PDEs
Priyabrata Saha
Saibal Mukhopadhyay
AI4CE
28
0
0
09 Sep 2024
Koopman-Assisted Reinforcement Learning
Preston Rozwood
Edward Mehrez
Ludger Paehler
Wen Sun
Steven L. Brunton
40
6
0
04 Mar 2024
Latent Neural PDE Solver: a reduced-order modelling framework for partial differential equations
Zijie Li
Saurabh Patil
Francis Ogoke
Dule Shu
Wilson Zhen
Michael Schneier
John R. Buchanan
A. Farimani
AI4CE
40
5
0
27 Feb 2024
Universal Physics Transformers: A Framework For Efficiently Scaling Neural Operators
Benedikt Alkin
Andreas Fürst
Simon Schmid
Lukas Gruber
Markus Holzleitner
Johannes Brandstetter
PINN
AI4CE
48
8
0
19 Feb 2024
Koopa: Learning Non-stationary Time Series Dynamics with Koopman Predictors
Yong Liu
Chenyu Li
Jianmin Wang
Mingsheng Long
AI4TS
32
103
0
30 May 2023
Multifactor Sequential Disentanglement via Structured Koopman Autoencoders
Nimrod Berman
Ilana D Naiman
Omri Azencot
CoGe
32
22
0
30 Mar 2023
The transformative potential of machine learning for experiments in fluid mechanics
Ricardo Vinuesa
Steven L. Brunton
B. McKeon
AI4CE
35
68
0
28 Mar 2023
Solving Inverse Physics Problems with Score Matching
Benjamin Holzschuh
S. Vegetti
Nils Thuerey
DiffM
13
10
0
24 Jan 2023
Exploring Physical Latent Spaces for High-Resolution Flow Restoration
Chloé Paliard
Nils Thuerey
Kiwon Um
AI4CE
25
0
0
21 Nov 2022
Physics-Informed Koopman Network
Yuying Liu
A. Sholokhov
Hassan Mansour
S. Nabi
AI4CE
31
3
0
17 Nov 2022
Guaranteed Conservation of Momentum for Learning Particle-based Fluid Dynamics
L. Prantl
Benjamin Ummenhofer
V. Koltun
Nils Thuerey
AI4CE
PINN
26
29
0
12 Oct 2022
Parameter-varying neural ordinary differential equations with partition-of-unity networks
Kookjin Lee
N. Trask
27
2
0
01 Oct 2022
Learning Bilinear Models of Actuated Koopman Generators from Partially-Observed Trajectories
Samuel E. Otto
Sebastian Peitz
C. Rowley
31
19
0
20 Sep 2022
Wavelet-based Loss for High-frequency Interface Dynamics
L. Prantl
Jan Bender
Tassilo Kugelstadt
Nils Thuerey
GAN
33
0
0
06 Sep 2022
Data-driven End-to-end Learning of Pole Placement Control for Nonlinear Dynamics via Koopman Invariant Subspaces
Tomoharu Iwata
Yoshinobu Kawahara
19
3
0
16 Aug 2022
A Model-Constrained Tangent Slope Learning Approach for Dynamical Systems
Hai V. Nguyen
T. Bui-Thanh
39
2
0
09 Aug 2022
Control of Two-way Coupled Fluid Systems with Differentiable Solvers
B. Ramos
Felix Trost
Nils Thuerey
AI4CE
17
5
0
01 Jun 2022
Transformer for Partial Differential Equations' Operator Learning
Zijie Li
Kazem Meidani
A. Farimani
42
144
0
26 May 2022
gLaSDI: Parametric Physics-informed Greedy Latent Space Dynamics Identification
Xiaolong He
Youngsoo Choi
William D. Fries
Jonathan Belof
Jiun-Shyan Chen
AI4CE
19
36
0
26 Apr 2022
Model reduction for the material point method via an implicit neural representation of the deformation map
Julius Berner
Maurizio M. Chiaramonte
E. Grinspun
Kevin Carlberg
29
15
0
25 Sep 2021
Geometry encoding for numerical simulations
Amir Maleki
J. Heyse
Rishikesh Ranade
Haiyang He
Priya Kasimbeg
Jay Pathak
3DV
AI4CE
35
2
0
15 Apr 2021
Meta-Learning Dynamics Forecasting Using Task Inference
Rui Wang
Robin Walters
Rose Yu
OOD
AI4TS
AI4CE
29
32
0
20 Feb 2021
CKNet: A Convolutional Neural Network Based on Koopman Operator for Modeling Latent Dynamics from Pixels
Yongqian Xiao
Xin Xu
Yifei Shi
16
9
0
19 Feb 2021
Stochastic Spatio-Temporal Optimization for Control and Co-Design of Systems in Robotics and Applied Physics
Ethan N. Evans
Andrew P. Kendall
Evangelos A. Theodorou
AI4CE
28
11
0
18 Feb 2021
Neural Dynamic Mode Decomposition for End-to-End Modeling of Nonlinear Dynamics
Tomoharu Iwata
Yoshinobu Kawahara
8
12
0
11 Dec 2020
Deep Adversarial Koopman Model for Reaction-Diffusion systems
K. Balakrishnan
Devesh Upadhyay
15
5
0
09 Jun 2020
Structured Mechanical Models for Robot Learning and Control
Jayesh K. Gupta
Kunal Menda
Zachary Manchester
Mykel J. Kochenderfer
DRL
26
34
0
21 Apr 2020
Differentiable Molecular Simulations for Control and Learning
Wujie Wang
Simon Axelrod
Rafael Gómez-Bombarelli
AI4CE
109
49
0
27 Feb 2020
Incorporating Symmetry into Deep Dynamics Models for Improved Generalization
Rui Wang
Robin Walters
Rose Yu
AI4CE
52
170
0
08 Feb 2020
Learning to Control PDEs with Differentiable Physics
Philipp Holl
V. Koltun
Nils Thuerey
AI4CE
PINN
44
185
0
21 Jan 2020
Learning Compositional Koopman Operators for Model-Based Control
Yunzhu Li
Hao He
Jiajun Wu
Dina Katabi
Antonio Torralba
21
112
0
18 Oct 2019
Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction
N. Benjamin Erichson
Michael Muehlebach
Michael W. Mahoney
AI4CE
PINN
6
140
0
26 May 2019
Deep Variational Koopman Models: Inferring Koopman Observations for Uncertainty-Aware Dynamics Modeling and Control
Jeremy Morton
F. Witherden
Mykel J Kochenderfer
18
45
0
26 Feb 2019
Latent-space Physics: Towards Learning the Temporal Evolution of Fluid Flow
S. Wiewel
M. Becher
N. Thürey
AI4CE
24
272
0
27 Feb 2018
1