Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.06605
Cited By
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models
17 May 2018
Pouya Samangouei
Maya Kabkab
Rama Chellappa
AAML
GAN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models"
50 / 252 papers shown
Title
ShapeAdv: Generating Shape-Aware Adversarial 3D Point Clouds
Kibok Lee
Zhuoyuan Chen
Xinchen Yan
R. Urtasun
Ersin Yumer
3DPC
23
30
0
24 May 2020
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
39
148
0
20 May 2020
Encryption Inspired Adversarial Defense for Visual Classification
Maungmaung Aprilpyone
Hitoshi Kiya
24
32
0
16 May 2020
GraCIAS: Grassmannian of Corrupted Images for Adversarial Security
Ankita Shukla
Pavan Turaga
Saket Anand
AAML
16
1
0
06 May 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
49
371
0
30 Apr 2020
Exploiting Defenses against GAN-Based Feature Inference Attacks in Federated Learning
Xinjian Luo
Xiangqi Zhu
FedML
78
25
0
27 Apr 2020
Ensemble Generative Cleaning with Feedback Loops for Defending Adversarial Attacks
Jianhe Yuan
Zhihai He
AAML
32
22
0
23 Apr 2020
Single-step Adversarial training with Dropout Scheduling
S. VivekB.
R. Venkatesh Babu
OOD
AAML
18
71
0
18 Apr 2020
Exploiting Deep Generative Prior for Versatile Image Restoration and Manipulation
Xingang Pan
Xiaohang Zhan
Bo Dai
Dahua Lin
Chen Change Loy
Ping Luo
DiffM
55
359
0
30 Mar 2020
Toward Adversarial Robustness via Semi-supervised Robust Training
Yiming Li
Baoyuan Wu
Yan Feng
Yanbo Fan
Yong Jiang
Zhifeng Li
Shutao Xia
AAML
87
13
0
16 Mar 2020
Diversity can be Transferred: Output Diversification for White- and Black-box Attacks
Y. Tashiro
Yang Song
Stefano Ermon
AAML
14
13
0
15 Mar 2020
Adversarial Vertex Mixup: Toward Better Adversarially Robust Generalization
Saehyung Lee
Hyungyu Lee
Sungroh Yoon
AAML
163
113
0
05 Mar 2020
Differentially Private Deep Learning with Smooth Sensitivity
Lichao Sun
Yingbo Zhou
Philip S. Yu
Caiming Xiong
FedML
26
9
0
01 Mar 2020
Real-Time Detectors for Digital and Physical Adversarial Inputs to Perception Systems
Y. Kantaros
Taylor J. Carpenter
Kaustubh Sridhar
Yahan Yang
Insup Lee
James Weimer
AAML
17
12
0
23 Feb 2020
Adversarial Detection and Correction by Matching Prediction Distributions
G. Vacanti
A. V. Looveren
AAML
14
16
0
21 Feb 2020
AI-GAN: Attack-Inspired Generation of Adversarial Examples
Tao Bai
Jun Zhao
Jinlin Zhu
Shoudong Han
Jiefeng Chen
Bo-wen Li
Alex C. Kot
GAN
39
48
0
06 Feb 2020
Minimax Defense against Gradient-based Adversarial Attacks
Blerta Lindqvist
R. Izmailov
AAML
19
0
0
04 Feb 2020
Defending Adversarial Attacks via Semantic Feature Manipulation
Shuo Wang
Tianle Chen
Surya Nepal
Carsten Rudolph
M. Grobler
Shangyu Chen
AAML
24
5
0
03 Feb 2020
A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
Jie Gui
Zhenan Sun
Yonggang Wen
Dacheng Tao
Jieping Ye
EGVM
33
821
0
20 Jan 2020
Benchmarking Adversarial Robustness
Yinpeng Dong
Qi-An Fu
Xiao Yang
Tianyu Pang
Hang Su
Zihao Xiao
Jun Zhu
AAML
31
36
0
26 Dec 2019
Malware Makeover: Breaking ML-based Static Analysis by Modifying Executable Bytes
Keane Lucas
Mahmood Sharif
Lujo Bauer
Michael K. Reiter
S. Shintre
AAML
31
67
0
19 Dec 2019
One Man's Trash is Another Man's Treasure: Resisting Adversarial Examples by Adversarial Examples
Chang Xiao
Changxi Zheng
AAML
25
19
0
25 Nov 2019
Invert and Defend: Model-based Approximate Inversion of Generative Adversarial Networks for Secure Inference
Wei-An Lin
Yogesh Balaji
Pouya Samangouei
Rama Chellappa
33
6
0
23 Nov 2019
Fine-grained Synthesis of Unrestricted Adversarial Examples
Omid Poursaeed
Tianxing Jiang
Yordanos Goshu
Harry Yang
Serge J. Belongie
Ser-Nam Lim
AAML
37
13
0
20 Nov 2019
Defective Convolutional Networks
Tiange Luo
Tianle Cai
Mengxiao Zhang
Siyu Chen
Di He
Liwei Wang
AAML
35
3
0
19 Nov 2019
Adversarial Embedding: A robust and elusive Steganography and Watermarking technique
Salah Ghamizi
Maxime Cordy
Mike Papadakis
Yves Le Traon
WIGM
AAML
15
7
0
14 Nov 2019
Adversarial Examples in Modern Machine Learning: A Review
R. Wiyatno
Anqi Xu
Ousmane Amadou Dia
A. D. Berker
AAML
21
104
0
13 Nov 2019
Label Smoothing and Logit Squeezing: A Replacement for Adversarial Training?
Ali Shafahi
Amin Ghiasi
Furong Huang
Tom Goldstein
AAML
27
40
0
25 Oct 2019
Instance adaptive adversarial training: Improved accuracy tradeoffs in neural nets
Yogesh Balaji
Tom Goldstein
Judy Hoffman
AAML
134
103
0
17 Oct 2019
A New Defense Against Adversarial Images: Turning a Weakness into a Strength
Tao Yu
Shengyuan Hu
Chuan Guo
Wei-Lun Chao
Kilian Q. Weinberger
AAML
58
101
0
16 Oct 2019
Improving Password Guessing via Representation Learning
Dario Pasquini
Ankit Gangwal
G. Ateniese
M. Bernaschi
Mauro Conti
OOD
19
71
0
09 Oct 2019
SmoothFool: An Efficient Framework for Computing Smooth Adversarial Perturbations
Ali Dabouei
Sobhan Soleymani
Fariborz Taherkhani
J. Dawson
Nasser M. Nasrabadi
AAML
104
19
0
08 Oct 2019
Perturbations are not Enough: Generating Adversarial Examples with Spatial Distortions
He Zhao
Trung Le
Paul Montague
O. Vel
Tamas Abraham
Dinh Q. Phung
AAML
28
8
0
03 Oct 2019
Impact of Low-bitwidth Quantization on the Adversarial Robustness for Embedded Neural Networks
Rémi Bernhard
Pierre-Alain Moëllic
J. Dutertre
AAML
MQ
24
18
0
27 Sep 2019
Metric Learning for Adversarial Robustness
Chengzhi Mao
Ziyuan Zhong
Junfeng Yang
Carl Vondrick
Baishakhi Ray
OOD
27
184
0
03 Sep 2019
Denoising and Verification Cross-Layer Ensemble Against Black-box Adversarial Attacks
Ka-Ho Chow
Wenqi Wei
Yanzhao Wu
Ling Liu
AAML
25
15
0
21 Aug 2019
DAPAS : Denoising Autoencoder to Prevent Adversarial attack in Semantic Segmentation
Seungju Cho
Tae Joon Jun
Byungsoo Oh
Daeyoung Kim
27
31
0
14 Aug 2019
Defense Against Adversarial Attacks Using Feature Scattering-based Adversarial Training
Haichao Zhang
Jianyu Wang
AAML
23
230
0
24 Jul 2019
Towards Adversarially Robust Object Detection
Haichao Zhang
Jianyu Wang
AAML
ObjD
25
130
0
24 Jul 2019
Fast and Provable ADMM for Learning with Generative Priors
Fabian Latorre Gómez
Armin Eftekhari
V. Cevher
GAN
30
43
0
07 Jul 2019
Invariance-inducing regularization using worst-case transformations suffices to boost accuracy and spatial robustness
Fanny Yang
Zuowen Wang
C. Heinze-Deml
28
42
0
26 Jun 2019
Are Adversarial Perturbations a Showstopper for ML-Based CAD? A Case Study on CNN-Based Lithographic Hotspot Detection
Kang Liu
Haoyu Yang
Yuzhe Ma
Benjamin Tan
Bei Yu
Evangeline F. Y. Young
Ramesh Karri
S. Garg
AAML
20
10
0
25 Jun 2019
A unified view on differential privacy and robustness to adversarial examples
Rafael Pinot
Florian Yger
Cédric Gouy-Pailler
Jamal Atif
AAML
21
17
0
19 Jun 2019
Towards Stable and Efficient Training of Verifiably Robust Neural Networks
Huan Zhang
Hongge Chen
Chaowei Xiao
Sven Gowal
Robert Stanforth
Bo-wen Li
Duane S. Boning
Cho-Jui Hsieh
AAML
17
344
0
14 Jun 2019
Enhancing Transformation-based Defenses using a Distribution Classifier
C. Kou
H. Lee
E. Chang
Teck Khim Ng
37
3
0
01 Jun 2019
Robust Sparse Regularization: Simultaneously Optimizing Neural Network Robustness and Compactness
Adnan Siraj Rakin
Zhezhi He
Li Yang
Yanzhi Wang
Liqiang Wang
Deliang Fan
AAML
40
21
0
30 May 2019
Securing Connected & Autonomous Vehicles: Challenges Posed by Adversarial Machine Learning and The Way Forward
A. Qayyum
Muhammad Usama
Junaid Qadir
Ala I. Al-Fuqaha
AAML
27
187
0
29 May 2019
ME-Net: Towards Effective Adversarial Robustness with Matrix Estimation
Yuzhe Yang
Guo Zhang
Dina Katabi
Zhi Xu
AAML
15
168
0
28 May 2019
Improving the Robustness of Deep Neural Networks via Adversarial Training with Triplet Loss
Pengcheng Li
Jinfeng Yi
Bowen Zhou
Lijun Zhang
AAML
37
36
0
28 May 2019
Purifying Adversarial Perturbation with Adversarially Trained Auto-encoders
Hebi Li
Qi Xiao
Shixin Tian
Jin Tian
AAML
27
4
0
26 May 2019
Previous
1
2
3
4
5
6
Next