ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.00013
  4. Cited By
Constraining Effective Field Theories with Machine Learning

Constraining Effective Field Theories with Machine Learning

30 April 2018
Johann Brehmer
Kyle Cranmer
Gilles Louppe
J. Pavez
    AI4CE
ArXivPDFHTML

Papers citing "Constraining Effective Field Theories with Machine Learning"

22 / 22 papers shown
Title
Online Difficulty Filtering for Reasoning Oriented Reinforcement Learning
Online Difficulty Filtering for Reasoning Oriented Reinforcement Learning
Sanghwan Bae
Jiwoo Hong
Min Young Lee
Hanbyul Kim
Jeongyeon Nam
Donghyun Kwak
OffRL
LRM
58
4
0
04 Apr 2025
FAIR Universe HiggsML Uncertainty Challenge Competition
FAIR Universe HiggsML Uncertainty Challenge Competition
W. Bhimji
P. Calafiura
Ragansu Chakkappai
Yuan-Tang Chou
S. Diefenbacher
...
D. Rousseau
Benjamin Sluijter
Benjamin Thorne
Ihsan Ullah
Yulei Zhang
46
2
0
03 Oct 2024
Sequential Neural Score Estimation: Likelihood-Free Inference with
  Conditional Score Based Diffusion Models
Sequential Neural Score Estimation: Likelihood-Free Inference with Conditional Score Based Diffusion Models
Louis Sharrock
J. Simons
Song Liu
Mark Beaumont
DiffM
64
34
0
10 Oct 2022
Exploration of Parameter Spaces Assisted by Machine Learning
Exploration of Parameter Spaces Assisted by Machine Learning
A. Hammad
Myeonghun Park
Raymundo Ramos
Pankaj Saha
23
15
0
20 Jul 2022
Machine Learning in the Search for New Fundamental Physics
Machine Learning in the Search for New Fundamental Physics
G. Karagiorgi
Gregor Kasieczka
S. Kravitz
Benjamin Nachman
David Shih
AI4CE
49
113
0
07 Dec 2021
A Cautionary Tale of Decorrelating Theory Uncertainties
A Cautionary Tale of Decorrelating Theory Uncertainties
A. Ghosh
Benjamin Nachman
32
17
0
16 Sep 2021
Truncated Marginal Neural Ratio Estimation
Truncated Marginal Neural Ratio Estimation
Benjamin Kurt Miller
A. Cole
Patrick Forré
Gilles Louppe
Christoph Weniger
44
37
0
02 Jul 2021
Quantum-inspired event reconstruction with Tensor Networks: Matrix
  Product States
Quantum-inspired event reconstruction with Tensor Networks: Matrix Product States
Jack Y. Araz
M. Spannowsky
47
16
0
15 Jun 2021
E Pluribus Unum Ex Machina: Learning from Many Collider Events at Once
E Pluribus Unum Ex Machina: Learning from Many Collider Events at Once
Benjamin Nachman
Jesse Thaler
37
33
0
18 Jan 2021
Benchmarking Simulation-Based Inference
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
104
186
0
12 Jan 2021
Towards constraining warm dark matter with stellar streams through
  neural simulation-based inference
Towards constraining warm dark matter with stellar streams through neural simulation-based inference
Joeri Hermans
N. Banik
Christoph Weniger
G. Bertone
Gilles Louppe
35
29
0
30 Nov 2020
Dealing with Nuisance Parameters using Machine Learning in High Energy
  Physics: a Review
Dealing with Nuisance Parameters using Machine Learning in High Energy Physics: a Review
T. Dorigo
P. D. Castro
23
14
0
17 Jul 2020
On Contrastive Learning for Likelihood-free Inference
On Contrastive Learning for Likelihood-free Inference
Conor Durkan
Iain Murray
George Papamakarios
BDL
55
117
0
10 Feb 2020
Simulation Assisted Likelihood-free Anomaly Detection
Simulation Assisted Likelihood-free Anomaly Detection
Anders Andreassen
Benjamin Nachman
David Shih
19
112
0
14 Jan 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
67
1,635
0
05 Dec 2019
MadMiner: Machine learning-based inference for particle physics
MadMiner: Machine learning-based inference for particle physics
Johann Brehmer
F. Kling
Irina Espejo
Kyle Cranmer
21
113
0
24 Jul 2019
Effective LHC measurements with matrix elements and machine learning
Effective LHC measurements with matrix elements and machine learning
Johann Brehmer
Kyle Cranmer
Irina Espejo
F. Kling
Gilles Louppe
J. Pavez
23
14
0
04 Jun 2019
Interpretable Deep Learning for Two-Prong Jet Classification with Jet
  Spectra
Interpretable Deep Learning for Two-Prong Jet Classification with Jet Spectra
A. Chakraborty
Sung Hak Lim
M. Nojiri
42
43
0
03 Apr 2019
Energy Flow Networks: Deep Sets for Particle Jets
Energy Flow Networks: Deep Sets for Particle Jets
Patrick T. Komiske
E. Metodiev
Jesse Thaler
PINN
3DPC
42
251
0
11 Oct 2018
INFERNO: Inference-Aware Neural Optimisation
INFERNO: Inference-Aware Neural Optimisation
P. D. Castro
T. Dorigo
24
47
0
12 Jun 2018
Mining gold from implicit models to improve likelihood-free inference
Mining gold from implicit models to improve likelihood-free inference
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
AI4CE
TPM
38
181
0
30 May 2018
A Guide to Constraining Effective Field Theories with Machine Learning
A Guide to Constraining Effective Field Theories with Machine Learning
Johann Brehmer
Kyle Cranmer
Gilles Louppe
J. Pavez
16
138
0
30 Apr 2018
1