Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1804.11285
Cited By
Adversarially Robust Generalization Requires More Data
30 April 2018
Ludwig Schmidt
Shibani Santurkar
Dimitris Tsipras
Kunal Talwar
A. Madry
OOD
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarially Robust Generalization Requires More Data"
50 / 198 papers shown
Title
Adversarial Robustness under Long-Tailed Distribution
Tong Wu
Ziwei Liu
Qingqiu Huang
Yu Wang
Dahua Lin
26
76
0
06 Apr 2021
Consistency Regularization for Adversarial Robustness
Jihoon Tack
Sihyun Yu
Jongheon Jeong
Minseon Kim
Sung Ju Hwang
Jinwoo Shin
AAML
41
57
0
08 Mar 2021
Improving Global Adversarial Robustness Generalization With Adversarially Trained GAN
Desheng Wang
Wei-dong Jin
Yunpu Wu
Aamir Khan
GAN
36
8
0
08 Mar 2021
Fixing Data Augmentation to Improve Adversarial Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
36
271
0
02 Mar 2021
A Survey On Universal Adversarial Attack
Chaoning Zhang
Philipp Benz
Chenguo Lin
Adil Karjauv
Jing Wu
In So Kweon
AAML
28
90
0
02 Mar 2021
Low Curvature Activations Reduce Overfitting in Adversarial Training
Vasu Singla
Sahil Singla
David Jacobs
S. Feizi
AAML
43
45
0
15 Feb 2021
Guided Interpolation for Adversarial Training
Chen Chen
Jingfeng Zhang
Xilie Xu
Tianlei Hu
Gang Niu
Gang Chen
Masashi Sugiyama
AAML
37
10
0
15 Feb 2021
When and How Mixup Improves Calibration
Linjun Zhang
Zhun Deng
Kenji Kawaguchi
James Zou
UQCV
36
67
0
11 Feb 2021
Recent Advances in Adversarial Training for Adversarial Robustness
Tao Bai
Jinqi Luo
Jun Zhao
Bihan Wen
Qian Wang
AAML
86
476
0
02 Feb 2021
Generating Out of Distribution Adversarial Attack using Latent Space Poisoning
Ujjwal Upadhyay
Prerana Mukherjee
39
7
0
09 Dec 2020
Recent Advances in Understanding Adversarial Robustness of Deep Neural Networks
Tao Bai
Jinqi Luo
Jun Zhao
AAML
49
8
0
03 Nov 2020
Adversarial Robust Training of Deep Learning MRI Reconstruction Models
Francesco Calivá
Kaiyang Cheng
Rutwik Shah
V. Pedoia
OOD
AAML
MedIm
30
10
0
30 Oct 2020
Robust Pre-Training by Adversarial Contrastive Learning
Ziyu Jiang
Tianlong Chen
Ting-Li Chen
Zhangyang Wang
30
228
0
26 Oct 2020
Adversarial Attacks on Binary Image Recognition Systems
Eric Balkanski
Harrison W. Chase
Kojin Oshiba
Alexander Rilee
Yaron Singer
Richard Wang
AAML
47
4
0
22 Oct 2020
Precise Statistical Analysis of Classification Accuracies for Adversarial Training
Adel Javanmard
Mahdi Soltanolkotabi
AAML
33
61
0
21 Oct 2020
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
39
48
0
19 Oct 2020
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
AAML
22
325
0
07 Oct 2020
Query complexity of adversarial attacks
Grzegorz Gluch
R. Urbanke
AAML
27
5
0
02 Oct 2020
A law of robustness for two-layers neural networks
Sébastien Bubeck
Yuanzhi Li
Dheeraj M. Nagaraj
35
57
0
30 Sep 2020
Adversarial Robustness of Stabilized NeuralODEs Might be from Obfuscated Gradients
Yifei Huang
Yaodong Yu
Hongyang R. Zhang
Yi Ma
Yuan Yao
AAML
37
26
0
28 Sep 2020
Adversarial Training with Stochastic Weight Average
Joong-won Hwang
Youngwan Lee
Sungchan Oh
Yuseok Bae
OOD
AAML
31
11
0
21 Sep 2020
Adversarial Machine Learning in Image Classification: A Survey Towards the Defender's Perspective
G. R. Machado
Eugênio Silva
R. Goldschmidt
AAML
33
157
0
08 Sep 2020
Addressing Neural Network Robustness with Mixup and Targeted Labeling Adversarial Training
Alfred Laugros
A. Caplier
Matthieu Ospici
AAML
24
19
0
19 Aug 2020
A Survey on Large-scale Machine Learning
Meng Wang
Weijie Fu
Xiangnan He
Shijie Hao
Xindong Wu
25
110
0
10 Aug 2020
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
32
73
0
07 Aug 2020
Derivation of Information-Theoretically Optimal Adversarial Attacks with Applications to Robust Machine Learning
Jirong Yi
R. Mudumbai
Weiyu Xu
AAML
32
2
0
28 Jul 2020
An Empirical Study on Robustness to Spurious Correlations using Pre-trained Language Models
Lifu Tu
Garima Lalwani
Spandana Gella
He He
LRM
33
184
0
14 Jul 2020
Understanding Adversarial Examples from the Mutual Influence of Images and Perturbations
Chaoning Zhang
Philipp Benz
Tooba Imtiaz
In-So Kweon
SSL
AAML
22
118
0
13 Jul 2020
How benign is benign overfitting?
Amartya Sanyal
P. Dokania
Varun Kanade
Philip Torr
NoLa
AAML
25
57
0
08 Jul 2020
Sharp Statistical Guarantees for Adversarially Robust Gaussian Classification
Chen Dan
Yuting Wei
Pradeep Ravikumar
26
45
0
29 Jun 2020
Self-training Avoids Using Spurious Features Under Domain Shift
Yining Chen
Colin Wei
Ananya Kumar
Tengyu Ma
OOD
29
85
0
17 Jun 2020
On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them
Chen Liu
Mathieu Salzmann
Tao R. Lin
Ryota Tomioka
Sabine Süsstrunk
AAML
24
81
0
15 Jun 2020
Provable tradeoffs in adversarially robust classification
Yan Sun
Hamed Hassani
David Hong
Alexander Robey
23
53
0
09 Jun 2020
Estimating Principal Components under Adversarial Perturbations
Pranjal Awasthi
Xue Chen
Aravindan Vijayaraghavan
AAML
17
2
0
31 May 2020
Arms Race in Adversarial Malware Detection: A Survey
Deqiang Li
Qianmu Li
Yanfang Ye
Shouhuai Xu
AAML
24
52
0
24 May 2020
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
39
148
0
20 May 2020
PatchGuard: A Provably Robust Defense against Adversarial Patches via Small Receptive Fields and Masking
Chong Xiang
A. Bhagoji
Vikash Sehwag
Prateek Mittal
AAML
30
29
0
17 May 2020
Efficiently Learning Adversarially Robust Halfspaces with Noise
Omar Montasser
Surbhi Goel
Ilias Diakonikolas
Nathan Srebro
29
32
0
15 May 2020
Adversarial Learning Guarantees for Linear Hypotheses and Neural Networks
Pranjal Awasthi
Natalie Frank
M. Mohri
AAML
36
56
0
28 Apr 2020
Adversarial Attacks and Defenses: An Interpretation Perspective
Ninghao Liu
Mengnan Du
Ruocheng Guo
Huan Liu
Xia Hu
AAML
31
8
0
23 Apr 2020
Certifying Joint Adversarial Robustness for Model Ensembles
M. Jonas
David Evans
AAML
21
2
0
21 Apr 2020
Adversarial Robustness: From Self-Supervised Pre-Training to Fine-Tuning
Tianlong Chen
Sijia Liu
Shiyu Chang
Yu Cheng
Lisa Amini
Zhangyang Wang
AAML
18
246
0
28 Mar 2020
Adversarial Robustness on In- and Out-Distribution Improves Explainability
Maximilian Augustin
Alexander Meinke
Matthias Hein
OOD
75
99
0
20 Mar 2020
When are Non-Parametric Methods Robust?
Robi Bhattacharjee
Kamalika Chaudhuri
AAML
44
27
0
13 Mar 2020
SuperMix: Supervising the Mixing Data Augmentation
Ali Dabouei
Sobhan Soleymani
Fariborz Taherkhani
Nasser M. Nasrabadi
21
98
0
10 Mar 2020
Adversarial Vertex Mixup: Toward Better Adversarially Robust Generalization
Saehyung Lee
Hyungyu Lee
Sungroh Yoon
AAML
163
113
0
05 Mar 2020
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve Adversarial Robustness
Ahmadreza Jeddi
M. Shafiee
Michelle Karg
C. Scharfenberger
A. Wong
OOD
AAML
72
63
0
02 Mar 2020
On Isometry Robustness of Deep 3D Point Cloud Models under Adversarial Attacks
Yue Zhao
Yuwei Wu
Caihua Chen
A. Lim
3DPC
16
70
0
27 Feb 2020
Improving Robustness of Deep-Learning-Based Image Reconstruction
Ankit Raj
Y. Bresler
Bo-wen Li
OOD
AAML
29
50
0
26 Feb 2020
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
47
788
0
26 Feb 2020
Previous
1
2
3
4
Next