ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.11285
  4. Cited By
Adversarially Robust Generalization Requires More Data

Adversarially Robust Generalization Requires More Data

30 April 2018
Ludwig Schmidt
Shibani Santurkar
Dimitris Tsipras
Kunal Talwar
A. Madry
    OOD
    AAML
ArXivPDFHTML

Papers citing "Adversarially Robust Generalization Requires More Data"

50 / 198 papers shown
Title
A Light Recipe to Train Robust Vision Transformers
A Light Recipe to Train Robust Vision Transformers
Edoardo Debenedetti
Vikash Sehwag
Prateek Mittal
ViT
32
69
0
15 Sep 2022
Robustness in deep learning: The good (width), the bad (depth), and the
  ugly (initialization)
Robustness in deep learning: The good (width), the bad (depth), and the ugly (initialization)
Zhenyu Zhu
Fanghui Liu
Grigorios G. Chrysos
V. Cevher
44
19
0
15 Sep 2022
CelebV-HQ: A Large-Scale Video Facial Attributes Dataset
CelebV-HQ: A Large-Scale Video Facial Attributes Dataset
Haoning Zhu
Wayne Wu
Wentao Zhu
Liming Jiang
Siwei Tang
Li Zhang
Ziwei Liu
Chen Change Loy
62
155
0
25 Jul 2022
Decoupled Adversarial Contrastive Learning for Self-supervised
  Adversarial Robustness
Decoupled Adversarial Contrastive Learning for Self-supervised Adversarial Robustness
Chaoning Zhang
Kang Zhang
Chenshuang Zhang
Axi Niu
Jiu Feng
Chang D. Yoo
In So Kweon
SSL
40
24
0
22 Jul 2022
AugRmixAT: A Data Processing and Training Method for Improving Multiple
  Robustness and Generalization Performance
AugRmixAT: A Data Processing and Training Method for Improving Multiple Robustness and Generalization Performance
Xiaoliang Liu
S. Furao
Jian Zhao
Changhai Nie
AAML
15
1
0
21 Jul 2022
Aug-NeRF: Training Stronger Neural Radiance Fields with Triple-Level
  Physically-Grounded Augmentations
Aug-NeRF: Training Stronger Neural Radiance Fields with Triple-Level Physically-Grounded Augmentations
Tianlong Chen
Peihao Wang
Zhiwen Fan
Zhangyang Wang
38
55
0
04 Jul 2022
On the Role of Generalization in Transferability of Adversarial Examples
On the Role of Generalization in Transferability of Adversarial Examples
Yilin Wang
Farzan Farnia
AAML
24
10
0
18 Jun 2022
Queried Unlabeled Data Improves and Robustifies Class-Incremental
  Learning
Queried Unlabeled Data Improves and Robustifies Class-Incremental Learning
Tianlong Chen
Sijia Liu
Shiyu Chang
Lisa Amini
Zhangyang Wang
CLL
28
4
0
15 Jun 2022
Adversarial Reprogramming Revisited
Adversarial Reprogramming Revisited
Matthias Englert
R. Lazic
AAML
29
9
0
07 Jun 2022
Robust Weight Perturbation for Adversarial Training
Robust Weight Perturbation for Adversarial Training
Chaojian Yu
Bo Han
Biwei Huang
Li Shen
Shiming Ge
Bo Du
Tongliang Liu
AAML
27
33
0
30 May 2022
Semi-supervised Semantics-guided Adversarial Training for Trajectory
  Prediction
Semi-supervised Semantics-guided Adversarial Training for Trajectory Prediction
Ruochen Jiao
Xiangguo Liu
Takami Sato
Qi Alfred Chen
Qi Zhu
AAML
43
20
0
27 May 2022
Why Robust Generalization in Deep Learning is Difficult: Perspective of
  Expressive Power
Why Robust Generalization in Deep Learning is Difficult: Perspective of Expressive Power
Binghui Li
Jikai Jin
Han Zhong
J. Hopcroft
Liwei Wang
OOD
87
27
0
27 May 2022
Learn2Weight: Parameter Adaptation against Similar-domain Adversarial
  Attacks
Learn2Weight: Parameter Adaptation against Similar-domain Adversarial Attacks
Siddhartha Datta
AAML
38
4
0
15 May 2022
SETTI: A Self-supervised Adversarial Malware Detection Architecture in
  an IoT Environment
SETTI: A Self-supervised Adversarial Malware Detection Architecture in an IoT Environment
Marjan Golmaryami
R. Taheri
Zahra Pooranian
Mohammad Shojafar
Pei Xiao
33
12
0
16 Apr 2022
A Simple Approach to Adversarial Robustness in Few-shot Image
  Classification
A Simple Approach to Adversarial Robustness in Few-shot Image Classification
Akshayvarun Subramanya
Hamed Pirsiavash
VLM
29
6
0
11 Apr 2022
SkeleVision: Towards Adversarial Resiliency of Person Tracking with
  Multi-Task Learning
SkeleVision: Towards Adversarial Resiliency of Person Tracking with Multi-Task Learning
Nilaksh Das
ShengYun Peng
Duen Horng Chau
AAML
35
2
0
02 Apr 2022
A Fast and Efficient Conditional Learning for Tunable Trade-Off between
  Accuracy and Robustness
A Fast and Efficient Conditional Learning for Tunable Trade-Off between Accuracy and Robustness
Souvik Kundu
Sairam Sundaresan
Massoud Pedram
P. Beerel
AAML
11
1
0
28 Mar 2022
A Survey of Robust Adversarial Training in Pattern Recognition:
  Fundamental, Theory, and Methodologies
A Survey of Robust Adversarial Training in Pattern Recognition: Fundamental, Theory, and Methodologies
Zhuang Qian
Kaizhu Huang
Qiufeng Wang
Xu-Yao Zhang
OOD
AAML
ObjD
54
72
0
26 Mar 2022
On the (Non-)Robustness of Two-Layer Neural Networks in Different
  Learning Regimes
On the (Non-)Robustness of Two-Layer Neural Networks in Different Learning Regimes
Elvis Dohmatob
A. Bietti
AAML
39
13
0
22 Mar 2022
No Shifted Augmentations (NSA): compact distributions for robust
  self-supervised Anomaly Detection
No Shifted Augmentations (NSA): compact distributions for robust self-supervised Anomaly Detection
Mohamed Yousef
Marcel R. Ackermann
Unmesh Kurup
Tom E. Bishop
OODD
OOD
45
3
0
19 Mar 2022
Why adversarial training can hurt robust accuracy
Why adversarial training can hurt robust accuracy
Jacob Clarysse
Julia Hörrmann
Fanny Yang
AAML
15
18
0
03 Mar 2022
Adversarial robustness of sparse local Lipschitz predictors
Adversarial robustness of sparse local Lipschitz predictors
Ramchandran Muthukumar
Jeremias Sulam
AAML
34
13
0
26 Feb 2022
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
Tianyu Pang
Min Lin
Xiao Yang
Junyi Zhu
Shuicheng Yan
40
120
0
21 Feb 2022
Sparsity Winning Twice: Better Robust Generalization from More Efficient
  Training
Sparsity Winning Twice: Better Robust Generalization from More Efficient Training
Tianlong Chen
Zhenyu Zhang
Pengju Wang
Santosh Balachandra
Haoyu Ma
Zehao Wang
Zhangyang Wang
OOD
AAML
100
47
0
20 Feb 2022
A Theory of PAC Learnability under Transformation Invariances
A Theory of PAC Learnability under Transformation Invariances
Hang Shao
Omar Montasser
Avrim Blum
27
18
0
15 Feb 2022
A Characterization of Semi-Supervised Adversarially-Robust PAC
  Learnability
A Characterization of Semi-Supervised Adversarially-Robust PAC Learnability
Idan Attias
Steve Hanneke
Yishay Mansour
35
15
0
11 Feb 2022
Layer-wise Regularized Adversarial Training using Layers Sustainability
  Analysis (LSA) framework
Layer-wise Regularized Adversarial Training using Layers Sustainability Analysis (LSA) framework
Mohammad Khalooei
M. Homayounpour
M. Amirmazlaghani
AAML
25
3
0
05 Feb 2022
Can Adversarial Training Be Manipulated By Non-Robust Features?
Can Adversarial Training Be Manipulated By Non-Robust Features?
Lue Tao
Lei Feng
Hongxin Wei
Jinfeng Yi
Sheng-Jun Huang
Songcan Chen
AAML
139
16
0
31 Jan 2022
CommonsenseQA 2.0: Exposing the Limits of AI through Gamification
CommonsenseQA 2.0: Exposing the Limits of AI through Gamification
Alon Talmor
Ori Yoran
Ronan Le Bras
Chandrasekhar Bhagavatula
Yoav Goldberg
Yejin Choi
Jonathan Berant
ELM
33
141
0
14 Jan 2022
On Distinctive Properties of Universal Perturbations
On Distinctive Properties of Universal Perturbations
Sung Min Park
K. Wei
Kai Y. Xiao
Jungshian Li
A. Madry
AAML
30
2
0
31 Dec 2021
Benign Overfitting in Adversarially Robust Linear Classification
Benign Overfitting in Adversarially Robust Linear Classification
Jinghui Chen
Yuan Cao
Quanquan Gu
AAML
SILM
34
10
0
31 Dec 2021
On the Existence of the Adversarial Bayes Classifier (Extended Version)
On the Existence of the Adversarial Bayes Classifier (Extended Version)
Pranjal Awasthi
Natalie Frank
M. Mohri
31
24
0
03 Dec 2021
Towards Understanding the Impact of Model Size on Differential Private
  Classification
Towards Understanding the Impact of Model Size on Differential Private Classification
Yinchen Shen
Zhiguo Wang
Ruoyu Sun
Xiaojing Shen
30
11
0
27 Nov 2021
MixACM: Mixup-Based Robustness Transfer via Distillation of Activated
  Channel Maps
MixACM: Mixup-Based Robustness Transfer via Distillation of Activated Channel Maps
Muhammad Awais
Fengwei Zhou
Chuanlong Xie
Jiawei Li
Sung-Ho Bae
Zhenguo Li
AAML
43
17
0
09 Nov 2021
Towards Evaluating the Robustness of Neural Networks Learned by
  Transduction
Towards Evaluating the Robustness of Neural Networks Learned by Transduction
Jiefeng Chen
Xi Wu
Yang Guo
Yingyu Liang
S. Jha
ELM
AAML
23
15
0
27 Oct 2021
Transductive Robust Learning Guarantees
Transductive Robust Learning Guarantees
Omar Montasser
Steve Hanneke
Nathan Srebro
26
13
0
20 Oct 2021
Improving Robustness using Generated Data
Improving Robustness using Generated Data
Sven Gowal
Sylvestre-Alvise Rebuffi
Olivia Wiles
Florian Stimberg
D. A. Calian
Timothy A. Mann
36
294
0
18 Oct 2021
Exploring Architectural Ingredients of Adversarially Robust Deep Neural
  Networks
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
48
100
0
07 Oct 2021
Calibrated Adversarial Training
Calibrated Adversarial Training
Tianjin Huang
Vlado Menkovski
Yulong Pei
Mykola Pechenizkiy
AAML
64
3
0
01 Oct 2021
Classification and Adversarial examples in an Overparameterized Linear
  Model: A Signal Processing Perspective
Classification and Adversarial examples in an Overparameterized Linear Model: A Signal Processing Perspective
Adhyyan Narang
Vidya Muthukumar
A. Sahai
SILM
AAML
38
1
0
27 Sep 2021
Virtual Data Augmentation: A Robust and General Framework for
  Fine-tuning Pre-trained Models
Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models
Kun Zhou
Wayne Xin Zhao
Sirui Wang
Fuzheng Zhang
Wei Wu
Ji-Rong Wen
AAML
34
7
0
13 Sep 2021
Regional Adversarial Training for Better Robust Generalization
Regional Adversarial Training for Better Robust Generalization
Chuanbiao Song
Yanbo Fan
Yichen Yang
Baoyuan Wu
Yiming Li
Zhifeng Li
Kun He
AAML
OOD
21
6
0
02 Sep 2021
Imbalanced Adversarial Training with Reweighting
Imbalanced Adversarial Training with Reweighting
Wentao Wang
Han Xu
Xiaorui Liu
Yaxin Li
B. Thuraisingham
Jiliang Tang
37
16
0
28 Jul 2021
Detecting Adversarial Examples Is (Nearly) As Hard As Classifying Them
Detecting Adversarial Examples Is (Nearly) As Hard As Classifying Them
Florian Tramèr
AAML
30
65
0
24 Jul 2021
The Values Encoded in Machine Learning Research
The Values Encoded in Machine Learning Research
Abeba Birhane
Pratyusha Kalluri
Dallas Card
William Agnew
Ravit Dotan
Michelle Bao
41
275
0
29 Jun 2021
Adversarial Training Helps Transfer Learning via Better Representations
Adversarial Training Helps Transfer Learning via Better Representations
Zhun Deng
Linjun Zhang
Kailas Vodrahalli
Kenji Kawaguchi
James Zou
GAN
36
54
0
18 Jun 2021
Adversarial Visual Robustness by Causal Intervention
Adversarial Visual Robustness by Causal Intervention
Kaihua Tang
Ming Tao
Hanwang Zhang
CML
AAML
32
21
0
17 Jun 2021
Pre-Trained Models: Past, Present and Future
Pre-Trained Models: Past, Present and Future
Xu Han
Zhengyan Zhang
Ning Ding
Yuxian Gu
Xiao Liu
...
Jie Tang
Ji-Rong Wen
Jinhui Yuan
Wayne Xin Zhao
Jun Zhu
AIFin
MQ
AI4MH
58
818
0
14 Jun 2021
NoiLIn: Improving Adversarial Training and Correcting Stereotype of
  Noisy Labels
NoiLIn: Improving Adversarial Training and Correcting Stereotype of Noisy Labels
Jingfeng Zhang
Xilie Xu
Bo Han
Tongliang Liu
Gang Niu
Li-zhen Cui
Masashi Sugiyama
NoLa
AAML
23
9
0
31 May 2021
Relating Adversarially Robust Generalization to Flat Minima
Relating Adversarially Robust Generalization to Flat Minima
David Stutz
Matthias Hein
Bernt Schiele
OOD
41
65
0
09 Apr 2021
Previous
1234
Next