ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.03184
  4. Cited By
Adversarial Time-to-Event Modeling

Adversarial Time-to-Event Modeling

9 April 2018
Paidamoyo Chapfuwa
Chenyang Tao
Chunyuan Li
C. Page
B. Goldstein
Lawrence Carin
Ricardo Henao
    AAML
    OOD
    CML
ArXivPDFHTML

Papers citing "Adversarial Time-to-Event Modeling"

20 / 20 papers shown
Title
Learning Survival Distributions with the Asymmetric Laplace Distribution
Learning Survival Distributions with the Asymmetric Laplace Distribution
Deming Sheng
Ricardo Henao
127
0
0
06 May 2025
Deep Neural Networks for Survival Analysis Based on a Multi-Task
  Framework
Deep Neural Networks for Survival Analysis Based on a Multi-Task Framework
Stephane Fotso
232
124
0
17 Jan 2018
Progressive Growing of GANs for Improved Quality, Stability, and
  Variation
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Tero Karras
Timo Aila
S. Laine
J. Lehtinen
GAN
109
7,318
0
27 Oct 2017
Symmetric Variational Autoencoder and Connections to Adversarial
  Learning
Symmetric Variational Autoencoder and Connections to Adversarial Learning
Liqun Chen
Shuyang Dai
Yunchen Pu
Chunyuan Li
Weiyao Wang
Lawrence Carin
DRL
GAN
70
71
0
06 Sep 2017
ALICE: Towards Understanding Adversarial Learning for Joint Distribution
  Matching
ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching
Chunyuan Li
Hao Liu
Changyou Chen
Yunchen Pu
Liqun Chen
Ricardo Henao
Lawrence Carin
GAN
FedML
60
220
0
05 Sep 2017
Adversarial Feature Matching for Text Generation
Adversarial Feature Matching for Text Generation
Yizhe Zhang
Zhe Gan
Kai Fan
Zhi Chen
Ricardo Henao
Dinghan Shen
Lawrence Carin
GAN
67
333
0
12 Jun 2017
Deep Learning for Patient-Specific Kidney Graft Survival Analysis
Deep Learning for Patient-Specific Kidney Graft Survival Analysis
Margaux Luck
Tristan Sylvain
H. Cardinal
Andrea Lodi
Yoshua Bengio
SyDa
104
115
0
29 May 2017
Image-to-Image Translation with Conditional Adversarial Networks
Image-to-Image Translation with Conditional Adversarial Networks
Phillip Isola
Jun-Yan Zhu
Tinghui Zhou
Alexei A. Efros
SSeg
302
19,560
0
21 Nov 2016
Generative Models and Model Criticism via Optimized Maximum Mean
  Discrepancy
Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy
Danica J. Sutherland
H. Tung
Heiko Strathmann
Soumyajit De
Aaditya Ramdas
Alex Smola
Arthur Gretton
60
258
0
14 Nov 2016
Gaussian Processes for Survival Analysis
Gaussian Processes for Survival Analysis
T. Fernandez
Nicolás Rivera
Yee Whye Teh
GP
49
76
0
02 Nov 2016
SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient
SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient
Lantao Yu
Weinan Zhang
Jun Wang
Yong Yu
GAN
54
2,397
0
18 Sep 2016
Deep Survival Analysis
Deep Survival Analysis
Rajesh Ranganath
A. Perotte
Noémie Elhadad
David M. Blei
125
198
0
06 Aug 2016
Improved Techniques for Training GANs
Improved Techniques for Training GANs
Tim Salimans
Ian Goodfellow
Wojciech Zaremba
Vicki Cheung
Alec Radford
Xi Chen
GAN
437
8,999
0
10 Jun 2016
Adversarially Learned Inference
Adversarially Learned Inference
Vincent Dumoulin
Ishmael Belghazi
Ben Poole
Olivier Mastropietro
Alex Lamb
Martín Arjovsky
Aaron Courville
GAN
67
1,312
0
02 Jun 2016
Generative Adversarial Text to Image Synthesis
Generative Adversarial Text to Image Synthesis
Scott E. Reed
Zeynep Akata
Xinchen Yan
Lajanugen Logeswaran
Bernt Schiele
Honglak Lee
GAN
162
3,136
0
17 May 2016
Unsupervised Representation Learning with Deep Convolutional Generative
  Adversarial Networks
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GAN
OOD
237
13,968
0
19 Nov 2015
Brain Tumor Segmentation with Deep Neural Networks
Brain Tumor Segmentation with Deep Neural Networks
Mohammad Havaei
Axel Davy
David Warde-Farley
A. Biard
Aaron Courville
Yoshua Bengio
C. Pal
Pierre-Marc Jodoin
Hugo Larochelle
3DV
99
2,869
0
13 May 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
381
43,154
0
11 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.1K
149,474
0
22 Dec 2014
Predicting accurate probabilities with a ranking loss
Predicting accurate probabilities with a ranking loss
A. Menon
Xiaoqian Jiang
Shankar Vembu
Charles Elkan
L. Ohno-Machado
68
71
0
18 Jun 2012
1