Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1804.02395
Cited By
Structured Evolution with Compact Architectures for Scalable Policy Optimization
6 April 2018
K. Choromanski
Mark Rowland
Vikas Sindhwani
Richard Turner
Adrian Weller
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Structured Evolution with Compact Architectures for Scalable Policy Optimization"
36 / 36 papers shown
Title
Robotic Table Tennis: A Case Study into a High Speed Learning System
David B. DÁmbrosio
Jonathan Abelian
Saminda Abeyruwan
Michael Ahn
Alex Bewley
...
Vikas Sindhwani
Avi Singh
Vincent Vanhoucke
Grace Vesom
Peng Xu
60
13
0
20 Feb 2025
An Enhanced Zeroth-Order Stochastic Frank-Wolfe Framework for Constrained Finite-Sum Optimization
Haishan Ye
Yinghui Huang
Hao Di
Xiangyu Chang
43
0
0
13 Jan 2025
Obtaining Lower Query Complexities through Lightweight Zeroth-Order Proximal Gradient Algorithms
Bin Gu
Xiyuan Wei
Hualin Zhang
Yi Chang
Heng-Chiao Huang
FedML
23
0
0
03 Oct 2024
Gradient-Free Method for Heavily Constrained Nonconvex Optimization
Wanli Shi
Hongchang Gao
Bin Gu
21
5
0
31 Aug 2024
Comparisons Are All You Need for Optimizing Smooth Functions
Chenyi Zhang
Tongyang Li
AAML
37
1
0
19 May 2024
Agile Catching with Whole-Body MPC and Blackbox Policy Learning
Saminda Abeyruwan
Alex Bewley
Nicholas M. Boffi
K. Choromanski
David B. DÁmbrosio
...
Anish Shankar
Vikas Sindhwani
Sumeet Singh
Jean-Jacques E. Slotine
Stephen Tu
8
9
0
14 Jun 2023
Variance-Reduced Gradient Estimation via Noise-Reuse in Online Evolution Strategies
Oscar Li
James Harrison
Jascha Narain Sohl-Dickstein
Virginia Smith
Luke Metz
56
5
0
21 Apr 2023
Faster Gradient-Free Algorithms for Nonsmooth Nonconvex Stochastic Optimization
Le‐Yu Chen
Jing Xu
Luo Luo
31
15
0
16 Jan 2023
Generalizing Gaussian Smoothing for Random Search
Katelyn Gao
Ozan Sener
36
14
0
27 Nov 2022
GoalsEye: Learning High Speed Precision Table Tennis on a Physical Robot
Tianli Ding
L. Graesser
Saminda Abeyruwan
David B. DÁmbrosio
Anish Shankar
P. Sermanet
Pannag R. Sanketi
Corey Lynch
59
20
0
07 Oct 2022
Zeroth-Order Negative Curvature Finding: Escaping Saddle Points without Gradients
Hualin Zhang
Huan Xiong
Bin Gu
35
7
0
04 Oct 2022
Towards A Unified Policy Abstraction Theory and Representation Learning Approach in Markov Decision Processes
Hao Fei
Hongyao Tang
Jianye Hao
Yan Zheng
OffRL
28
0
0
16 Sep 2022
Implicit Two-Tower Policies
Yunfan Zhao
Qingkai Pan
K. Choromanski
Deepali Jain
Vikas Sindhwani
OffRL
31
3
0
02 Aug 2022
TTOpt: A Maximum Volume Quantized Tensor Train-based Optimization and its Application to Reinforcement Learning
Konstantin Sozykin
Andrei Chertkov
R. Schutski
Anh-Huy Phan
A. Cichocki
Ivan Oseledets
16
35
0
30 Apr 2022
Dimensionality Reduction and Prioritized Exploration for Policy Search
Marius Memmel
Puze Liu
Davide Tateo
Jan Peters
23
3
0
09 Mar 2022
Deep Reinforcement Learning Versus Evolution Strategies: A Comparative Survey
Amjad Yousef Majid
Serge Saaybi
Tomas van Rietbergen
Vincent François-Lavet
R. V. Prasad
Chris Verhoeven
OffRL
62
55
0
28 Sep 2021
Curvature-Aware Derivative-Free Optimization
Bumsu Kim
HanQin Cai
Daniel McKenzie
W. Yin
ODL
35
10
0
27 Sep 2021
An Accelerated Variance-Reduced Conditional Gradient Sliding Algorithm for First-order and Zeroth-order Optimization
Xiyuan Wei
Bin Gu
Heng-Chiao Huang
31
1
0
18 Sep 2021
Robust Stability of Neural Network-controlled Nonlinear Systems with Parametric Variability
Soumyabrata Talukder
Ratnesh Kumar
18
7
0
13 Sep 2021
EDEN: Communication-Efficient and Robust Distributed Mean Estimation for Federated Learning
S. Vargaftik
Ran Ben-Basat
Amit Portnoy
Gal Mendelson
Y. Ben-Itzhak
Michael Mitzenmacher
FedML
46
46
0
19 Aug 2021
On the Expressive Power of Self-Attention Matrices
Valerii Likhosherstov
K. Choromanski
Adrian Weller
37
34
0
07 Jun 2021
MLGO: a Machine Learning Guided Compiler Optimizations Framework
Mircea Trofin
Yundi Qian
E. Brevdo
Zinan Lin
K. Choromanski
Didong Li
44
62
0
13 Jan 2021
Improving Neural Network Training in Low Dimensional Random Bases
Frithjof Gressmann
Zach Eaton-Rosen
Carlo Luschi
30
28
0
09 Nov 2020
Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves
Luke Metz
Niru Maheswaranathan
C. Freeman
Ben Poole
Jascha Narain Sohl-Dickstein
33
62
0
23 Sep 2020
Sample-efficient Cross-Entropy Method for Real-time Planning
Cristina Pinneri
Shambhuraj Sawant
Sebastian Blaes
Jan Achterhold
Joerg Stueckler
Michal Rolínek
Georg Martius
34
98
0
14 Aug 2020
An adaptive stochastic gradient-free approach for high-dimensional blackbox optimization
Anton Dereventsov
Clayton Webster
Joseph Daws
22
10
0
18 Jun 2020
Robotic Table Tennis with Model-Free Reinforcement Learning
Wenbo Gao
L. Graesser
K. Choromanski
Xingyou Song
N. Lazić
Pannag R. Sanketi
Vikas Sindhwani
Navdeep Jaitly
19
44
0
31 Mar 2020
Zeroth-Order Regularized Optimization (ZORO): Approximately Sparse Gradients and Adaptive Sampling
HanQin Cai
Daniel McKenzie
W. Yin
Zhenliang Zhang
63
49
0
29 Mar 2020
BinaryDuo: Reducing Gradient Mismatch in Binary Activation Network by Coupling Binary Activations
Hyungjun Kim
Kyungsu Kim
Jinseok Kim
Jae-Joon Kim
MQ
27
47
0
16 Feb 2020
Effective Diversity in Population Based Reinforcement Learning
Jack Parker-Holder
Aldo Pacchiano
K. Choromanski
Stephen J. Roberts
22
158
0
03 Feb 2020
Population-Guided Parallel Policy Search for Reinforcement Learning
Whiyoung Jung
Giseung Park
Y. Sung
OffRL
24
38
0
09 Jan 2020
Linear interpolation gives better gradients than Gaussian smoothing in derivative-free optimization
A. Berahas
Liyuan Cao
K. Choromanski
K. Scheinberg
19
19
0
29 May 2019
Provably Robust Blackbox Optimization for Reinforcement Learning
K. Choromanski
Aldo Pacchiano
Jack Parker-Holder
Yunhao Tang
Deepali Jain
Yuxiang Yang
Atil Iscen
Jasmine Hsu
Vikas Sindhwani
13
5
0
07 Mar 2019
Understanding and Training Deep Diagonal Circulant Neural Networks
Alexandre Araujo
Benjamin Négrevergne
Y. Chevaleyre
Jamal Atif
27
4
0
29 Jan 2019
Zeroth-order Nonconvex Stochastic Optimization: Handling Constraints, High-Dimensionality and Saddle-Points
Krishnakumar Balasubramanian
Saeed Ghadimi
ODL
14
100
0
17 Sep 2018
Variational Optimization
J. Staines
David Barber
DRL
65
53
0
18 Dec 2012
1