ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.02086
  4. Cited By
Structured Disentangled Representations

Structured Disentangled Representations

6 April 2018
Babak Esmaeili
Hao Wu
Sarthak Jain
Alican Bozkurt
N. Siddharth
Brooks Paige
Dana H. Brooks
Jennifer Dy
Jan-Willem van de Meent
    OOD
    CML
    BDL
    DRL
ArXivPDFHTML

Papers citing "Structured Disentangled Representations"

35 / 35 papers shown
Title
Can Models Learn Skill Composition from Examples?
Can Models Learn Skill Composition from Examples?
Haoyu Zhao
Simran Kaur
Dingli Yu
Anirudh Goyal
Sanjeev Arora
CoGe
MoE
58
3
0
29 Sep 2024
When does compositional structure yield compositional generalization? A kernel theory
When does compositional structure yield compositional generalization? A kernel theory
Samuel Lippl
Kim Stachenfeld
NAI
CoGe
73
5
0
26 May 2024
Text Attribute Control via Closed-Loop Disentanglement
Text Attribute Control via Closed-Loop Disentanglement
Lei Sha
Thomas Lukasiewicz
DRL
43
2
0
01 Dec 2023
Vector-based Representation is the Key: A Study on Disentanglement and
  Compositional Generalization
Vector-based Representation is the Key: A Study on Disentanglement and Compositional Generalization
Tao Yang
Yuwang Wang
Cuiling Lan
Yan Lu
Nanning Zheng
OCL
CoGe
DRL
36
7
0
29 May 2023
Correcting Flaws in Common Disentanglement Metrics
Correcting Flaws in Common Disentanglement Metrics
Louis Mahon
Lei Shah
Thomas Lukasiewicz
CoGe
DRL
37
3
0
05 Apr 2023
Taking A Closer Look at Visual Relation: Unbiased Video Scene Graph
  Generation with Decoupled Label Learning
Taking A Closer Look at Visual Relation: Unbiased Video Scene Graph Generation with Decoupled Label Learning
Wenqing Wang
Yawei Luo
Zhiqin Chen
Tao Jiang
Lei Chen
Yi Yang
Jun Xiao
35
7
0
23 Mar 2023
A Survey of Methods, Challenges and Perspectives in Causality
A Survey of Methods, Challenges and Perspectives in Causality
Gael Gendron
Michael Witbrock
Gillian Dobbie
OOD
AI4CE
CML
31
12
0
01 Feb 2023
eVAE: Evolutionary Variational Autoencoder
eVAE: Evolutionary Variational Autoencoder
Zhangkai Wu
LongBing Cao
Lei Qi
BDL
DRL
33
10
0
01 Jan 2023
LADIS: Language Disentanglement for 3D Shape Editing
LADIS: Language Disentanglement for 3D Shape Editing
Ian Huang
Panos Achlioptas
Tianyi Zhang
Sergey Tulyakov
Minhyuk Sung
Leonidas J. Guibas
31
10
0
09 Dec 2022
Disentangling representations in Restricted Boltzmann Machines without
  adversaries
Disentangling representations in Restricted Boltzmann Machines without adversaries
Jorge Fernandez-de-Cossio-Diaz
Simona Cocco
R. Monasson
DRL
40
13
0
23 Jun 2022
GlanceNets: Interpretabile, Leak-proof Concept-based Models
GlanceNets: Interpretabile, Leak-proof Concept-based Models
Emanuele Marconato
Andrea Passerini
Stefano Teso
106
64
0
31 May 2022
Leveraging Relational Information for Learning Weakly Disentangled
  Representations
Leveraging Relational Information for Learning Weakly Disentangled Representations
Andrea Valenti
D. Bacciu
CoGe
DRL
29
5
0
20 May 2022
Is Fairness Only Metric Deep? Evaluating and Addressing Subgroup Gaps in
  Deep Metric Learning
Is Fairness Only Metric Deep? Evaluating and Addressing Subgroup Gaps in Deep Metric Learning
Natalie Dullerud
Karsten Roth
Kimia Hamidieh
Nicolas Papernot
Marzyeh Ghassemi
30
15
0
23 Mar 2022
Symmetry-Based Representations for Artificial and Biological General
  Intelligence
Symmetry-Based Representations for Artificial and Biological General Intelligence
I. Higgins
S. Racanière
Danilo Jimenez Rezende
AI4CE
31
44
0
17 Mar 2022
Interpretable Molecular Graph Generation via Monotonic Constraints
Interpretable Molecular Graph Generation via Monotonic Constraints
Yuanqi Du
Xiaojie Guo
Amarda Shehu
Liang Zhao
65
19
0
28 Feb 2022
On PAC-Bayesian reconstruction guarantees for VAEs
On PAC-Bayesian reconstruction guarantees for VAEs
Badr-Eddine Chérief-Abdellatif
Yuyang Shi
Arnaud Doucet
Benjamin Guedj
DRL
50
17
0
23 Feb 2022
Towards Disentangling Information Paths with Coded ResNeXt
Towards Disentangling Information Paths with Coded ResNeXt
Apostolos Avranas
Marios Kountouris
FAtt
17
1
0
10 Feb 2022
Discovery of Single Independent Latent Variable
Discovery of Single Independent Latent Variable
Uri Shaham
Jonathan Svirsky
Ori Katz
Ronen Talmon
CML
28
2
0
12 Oct 2021
Deep Dive into Semi-Supervised ELBO for Improving Classification
  Performance
Deep Dive into Semi-Supervised ELBO for Improving Classification Performance
Fahim Faisal Niloy
M. A. Amin
Akm Mahbubur Rahman
A. Ali
DRL
25
0
0
29 Aug 2021
Symmetric Wasserstein Autoencoders
Symmetric Wasserstein Autoencoders
S. Sun
Hong Guo
DiffM
GAN
26
0
0
24 Jun 2021
Measuring Disentanglement: A Review of Metrics
Measuring Disentanglement: A Review of Metrics
M. Carbonneau
Julian Zaïdi
Jonathan Boilard
G. Gagnon
CoGe
DRL
28
81
0
16 Dec 2020
Counterfactual Data Augmentation using Locally Factored Dynamics
Counterfactual Data Augmentation using Locally Factored Dynamics
Silviu Pitis
Elliot Creager
Animesh Garg
BDL
OffRL
21
85
0
06 Jul 2020
Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement
Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement
Xiaojie Guo
Liang Zhao
Zhao Qin
Lingfei Wu
Amarda Shehu
Yanfang Ye
CoGe
DRL
38
46
0
09 Jun 2020
S3VAE: Self-Supervised Sequential VAE for Representation Disentanglement
  and Data Generation
S3VAE: Self-Supervised Sequential VAE for Representation Disentanglement and Data Generation
Yizhe Zhu
Martin Renqiang Min
Asim Kadav
H. Graf
CoGe
DRL
24
95
0
23 May 2020
Balancing reconstruction error and Kullback-Leibler divergence in
  Variational Autoencoders
Balancing reconstruction error and Kullback-Leibler divergence in Variational Autoencoders
Andrea Asperti
Matteo Trentin
DRL
22
96
0
18 Feb 2020
Fully-hierarchical fine-grained prosody modeling for interpretable
  speech synthesis
Fully-hierarchical fine-grained prosody modeling for interpretable speech synthesis
Guangzhi Sun
Yu Zhang
Ron J. Weiss
Yuanbin Cao
Heiga Zen
Yonghui Wu
11
130
0
06 Feb 2020
An Explicit Local and Global Representation Disentanglement Framework
  with Applications in Deep Clustering and Unsupervised Object Detection
An Explicit Local and Global Representation Disentanglement Framework with Applications in Deep Clustering and Unsupervised Object Detection
Rujikorn Charakorn
Y. Thawornwattana
Sirawaj Itthipuripat
Nick Pawlowski
P. Manoonpong
Nat Dilokthanakul
DRL
OCL
21
13
0
24 Jan 2020
Rate-Regularization and Generalization in VAEs
Rate-Regularization and Generalization in VAEs
Alican Bozkurt
Babak Esmaeili
Jean-Baptiste Tristan
Dana H. Brooks
Jennifer G. Dy
Jan-Willem van de Meent
DRL
25
7
0
11 Nov 2019
Weakly Supervised Disentanglement with Guarantees
Weakly Supervised Disentanglement with Guarantees
Rui Shu
Yining Chen
Abhishek Kumar
Stefano Ermon
Ben Poole
CoGe
DRL
28
136
0
22 Oct 2019
Disentangling and Learning Robust Representations with Natural
  Clustering
Disentangling and Learning Robust Representations with Natural Clustering
Javier Antorán
A. Miguel
CoGe
OOD
CML
DRL
8
19
0
27 Jan 2019
MAE: Mutual Posterior-Divergence Regularization for Variational
  AutoEncoders
MAE: Mutual Posterior-Divergence Regularization for Variational AutoEncoders
Xuezhe Ma
Chunting Zhou
Eduard H. Hovy
DRL
15
39
0
06 Jan 2019
A Spectral Regularizer for Unsupervised Disentanglement
A Spectral Regularizer for Unsupervised Disentanglement
Aditya A. Ramesh
Youngduck Choi
Yann LeCun
DRL
21
42
0
04 Dec 2018
Interpretable Neuron Structuring with Graph Spectral Regularization
Interpretable Neuron Structuring with Graph Spectral Regularization
Alexander Tong
David van Dijk
Jay S. Stanley
Matthew Amodio
Kristina M. Yim
R. Muhle
J. Noonan
Guy Wolf
Smita Krishnaswamy
27
6
0
30 Sep 2018
Hyperprior Induced Unsupervised Disentanglement of Latent
  Representations
Hyperprior Induced Unsupervised Disentanglement of Latent Representations
Abdul Fatir Ansari
Harold Soh
CoGe
CML
UD
DRL
21
31
0
12 Sep 2018
SOM-VAE: Interpretable Discrete Representation Learning on Time Series
SOM-VAE: Interpretable Discrete Representation Learning on Time Series
Vincent Fortuin
Matthias Huser
Francesco Locatello
Heiko Strathmann
Gunnar Rätsch
BDL
AI4TS
29
140
0
06 Jun 2018
1