Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1803.09050
Cited By
Learning to Reweight Examples for Robust Deep Learning
24 March 2018
Mengye Ren
Wenyuan Zeng
Binh Yang
R. Urtasun
OOD
NoLa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning to Reweight Examples for Robust Deep Learning"
50 / 772 papers shown
Title
LIMIS: Locally Interpretable Modeling using Instance-wise Subsampling
Jinsung Yoon
Sercan Ö. Arik
Tomas Pfister
FAtt
10
2
0
26 Sep 2019
Data Valuation using Reinforcement Learning
Jinsung Yoon
Sercan Ö. Arik
Tomas Pfister
TDI
25
173
0
25 Sep 2019
Anchor Loss: Modulating Loss Scale based on Prediction Difficulty
Serim Ryou
Seong-Gyun Jeong
Pietro Perona
13
43
0
24 Sep 2019
A Simple yet Effective Baseline for Robust Deep Learning with Noisy Labels
Yucen Luo
Jun Zhu
Tomas Pfister
NoLa
10
6
0
20 Sep 2019
Using Latent Codes for Class Imbalance Problem in Unsupervised Domain Adaptation
Boris Chidlovskii
11
2
0
17 Sep 2019
Unsupervised Domain Adaptation for Depth Prediction from Images
A. Tonioni
Matteo Poggi
S. Mattoccia
Luigi Di Stefano
MDE
19
82
0
09 Sep 2019
L_DMI: An Information-theoretic Noise-robust Loss Function
Yilun Xu
Peng Cao
Yuqing Kong
Yizhou Wang
NoLa
8
57
0
08 Sep 2019
Learning with Noisy Labels for Sentence-level Sentiment Classification
Hao Wang
Bing-Quan Liu
Chaozhuo Li
Yan Yang
Tianrui Li
NoLa
13
26
0
31 Aug 2019
Learning to Transfer Learn: Reinforcement Learning-Based Selection for Adaptive Transfer Learning
Linchao Zhu
Sercan Ö. Arik
Yezhou Yang
Tomas Pfister
19
5
0
29 Aug 2019
MetaMixUp: Learning Adaptive Interpolation Policy of MixUp with Meta-Learning
Zhijun Mai
Guosheng Hu
Dexiong Chen
Fumin Shen
Heng Tao Shen
22
41
0
27 Aug 2019
Mobility-aware Content Preference Learning in Decentralized Caching Networks
Yu Ye
Ming Xiao
Mikael Skoglund
9
18
0
22 Aug 2019
Adversarial-Based Knowledge Distillation for Multi-Model Ensemble and Noisy Data Refinement
Zhiqiang Shen
Zhankui He
Wanyun Cui
Jiahui Yu
Yutong Zheng
Chenchen Zhu
Marios Savvides
AAML
17
5
0
22 Aug 2019
NLNL: Negative Learning for Noisy Labels
Youngdong Kim
Junho Yim
Juseung Yun
Junmo Kim
NoLa
17
265
0
19 Aug 2019
On Defending Against Label Flipping Attacks on Malware Detection Systems
R. Taheri
R. Javidan
Mohammad Shojafar
Zahra Pooranian
A. Miri
Mauro Conti
AAML
19
88
0
13 Aug 2019
Deep Self-Learning From Noisy Labels
Jiangfan Han
Ping Luo
Xiaogang Wang
NoLa
19
277
0
06 Aug 2019
Teacher Supervises Students How to Learn From Partially Labeled Images for Facial Landmark Detection
Xuanyi Dong
Yezhou Yang
CVBM
14
66
0
06 Aug 2019
Product Image Recognition with Guidance Learning and Noisy Supervision
Qing Li
Xiaojiang Peng
Liangliang Cao
Wenbin Du
Hao Xing
Yu Qiao
NoLa
9
21
0
26 Jul 2019
Deep network as memory space: complexity, generalization, disentangled representation and interpretability
X. Dong
L. Zhou
28
1
0
12 Jul 2019
Learning from Web Data with Self-Organizing Memory Module
Y. Tu
Li Niu
Junjie Chen
Dawei Cheng
Liqing Zhang
20
20
0
28 Jun 2019
Data Cleansing for Models Trained with SGD
Satoshi Hara
Atsushi Nitanda
Takanori Maehara
TDI
31
68
0
20 Jun 2019
A Meta Approach to Defend Noisy Labels by the Manifold Regularizer PSDR
Pengfei Chen
B. Liao
Guangyong Chen
Shengyu Zhang
NoLa
14
8
0
13 Jun 2019
Learning to Segment Skin Lesions from Noisy Annotations
Z. Mirikharaji
Yiqi Yan
Ghassan Hamarneh
38
77
0
10 Jun 2019
Robust Learning Under Label Noise With Iterative Noise-Filtering
D. Nguyen
Thi-Phuong-Nhung Ngo
Zhongyu Lou
Michael Klar
Laura Beggel
Thomas Brox
NoLa
6
16
0
01 Jun 2019
Are Anchor Points Really Indispensable in Label-Noise Learning?
Xiaobo Xia
Tongliang Liu
N. Wang
Bo Han
Chen Gong
Gang Niu
Masashi Sugiyama
NoLa
11
369
0
01 Jun 2019
Enhancing Simple Models by Exploiting What They Already Know
Amit Dhurandhar
Karthikeyan Shanmugam
Ronny Luss
11
2
0
30 May 2019
Uncertainty Based Detection and Relabeling of Noisy Image Labels
Jan M. Köhler
Maximilian Autenrieth
William H. Beluch
NoLa
24
28
0
29 May 2019
Simple and Effective Regularization Methods for Training on Noisily Labeled Data with Generalization Guarantee
Wei Hu
Zhiyuan Li
Dingli Yu
NoLa
19
12
0
27 May 2019
Derivative Manipulation for General Example Weighting
Xinshao Wang
Elyor Kodirov
Yang Hua
N. Robertson
NoLa
11
1
0
27 May 2019
Learning to Auto Weight: Entirely Data-driven and Highly Efficient Weighting Framework
Zhenmao Li
Yichao Wu
Ken Chen
Yudong Wu
Shunfeng Zhou
Jiaheng Liu
Junjie Yan
13
5
0
27 May 2019
Countering Noisy Labels By Learning From Auxiliary Clean Labels
Tsung Wei Tsai
Chongxuan Li
Jun Zhu
SSL
10
1
0
23 May 2019
Training Object Detectors With Noisy Data
Simon Chadwick
Paul Newman
NoLa
20
36
0
17 May 2019
Addressing the Loss-Metric Mismatch with Adaptive Loss Alignment
Chen Huang
Shuangfei Zhai
Walter A. Talbott
Miguel Angel Bautista
Shi Sun
Carlos Guestrin
J. Susskind
26
75
0
15 May 2019
Task-Driven Data Verification via Gradient Descent
Siavash Golkar
Kyunghyun Cho
9
0
0
14 May 2019
Understanding and Utilizing Deep Neural Networks Trained with Noisy Labels
Pengfei Chen
B. Liao
Guangyong Chen
Shengyu Zhang
NoLa
9
383
0
13 May 2019
Label-Noise Robust Multi-Domain Image-to-Image Translation
Takuhiro Kaneko
Tatsuya Harada
30
3
0
06 May 2019
Unsupervised Label Noise Modeling and Loss Correction
Eric Arazo Sanchez
Diego Ortego
Paul Albert
Noel E. O'Connor
Kevin McGuinness
NoLa
44
602
0
25 Apr 2019
Reliable Weakly Supervised Learning: Maximize Gain and Maintain Safeness
Lan-Zhe Guo
Yu-Feng Li
Ming Li
Jinfeng Yi
Bowen Zhou
Zhi-Hua Zhou
19
2
0
22 Apr 2019
Least Squares Auto-Tuning
Shane T. Barratt
Stephen P. Boyd
MoMe
19
23
0
10 Apr 2019
Wasserstein Adversarial Regularization (WAR) on label noise
Kilian Fatras
B. Bushan
Sylvain Lobry
Rémi Flamary
D. Tuia
Nicolas Courty
19
24
0
08 Apr 2019
Learning to Adapt for Stereo
A. Tonioni
Oscar Rahnama
Thomas Joy
Luigi Di Stefano
Thalaiyasingam Ajanthan
Philip Torr
13
83
0
05 Apr 2019
A Robust Learning Approach to Domain Adaptive Object Detection
Mehran Khodabandeh
Arash Vahdat
Mani Ranjbar
W. Macready
ObjD
OOD
TTA
16
245
0
04 Apr 2019
IMAE for Noise-Robust Learning: Mean Absolute Error Does Not Treat Examples Equally and Gradient Magnitude's Variance Matters
Xinshao Wang
Yang Hua
Elyor Kodirov
David A. Clifton
N. Robertson
NoLa
24
62
0
28 Mar 2019
Gradient Descent with Early Stopping is Provably Robust to Label Noise for Overparameterized Neural Networks
Mingchen Li
Mahdi Soltanolkotabi
Samet Oymak
NoLa
47
351
0
27 Mar 2019
Noise-Tolerant Paradigm for Training Face Recognition CNNs
Wei Hu
Yangyu Huang
Fan Zhang
Ruirui Li
NoLa
CVBM
22
62
0
25 Mar 2019
Safeguarded Dynamic Label Regression for Generalized Noisy Supervision
Jiangchao Yao
Ya Zhang
Ivor W. Tsang
Jun-wei Sun
NoLa
14
1
0
06 Mar 2019
Deep Multi-modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges
Di Feng
Christian Haase-Schuetz
Lars Rosenbaum
Heinz Hertlein
Claudius Gläser
Fabian Duffhauss
W. Wiesbeck
Klaus C. J. Dietmayer
3DPC
41
987
0
21 Feb 2019
Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting
Jun Shu
Qi Xie
Lixuan Yi
Qian Zhao
Sanping Zhou
Zongben Xu
Deyu Meng
NoLa
12
4
0
20 Feb 2019
Learning to Generalize from Sparse and Underspecified Rewards
Rishabh Agarwal
Chen Liang
Dale Schuurmans
Mohammad Norouzi
OffRL
43
97
0
19 Feb 2019
Learning From Noisy Labels By Regularized Estimation Of Annotator Confusion
Ryutaro Tanno
A. Saeedi
S. Sankaranarayanan
Daniel C. Alexander
N. Silberman
NoLa
27
228
0
10 Feb 2019
Robust Inference via Generative Classifiers for Handling Noisy Labels
Kimin Lee
Sukmin Yun
Kibok Lee
Honglak Lee
Bo-wen Li
Jinwoo Shin
NoLa
30
134
0
31 Jan 2019
Previous
1
2
3
...
14
15
16
Next