ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.07202
15
36

Training Object Detectors With Noisy Data

17 May 2019
Simon Chadwick
Paul Newman
    NoLa
ArXivPDFHTML
Abstract

The availability of a large quantity of labelled training data is crucial for the training of modern object detectors. Hand labelling training data is time consuming and expensive while automatic labelling methods inevitably add unwanted noise to the labels. We examine the effect of different types of label noise on the performance of an object detector. We then show how co-teaching, a method developed for handling noisy labels and previously demonstrated on a classification problem, can be improved to mitigate the effects of label noise in an object detection setting. We illustrate our results using simulated noise on the KITTI dataset and on a vehicle detection task using automatically labelled data.

View on arXiv
Comments on this paper