Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1803.01588
Cited By
N-body Networks: a Covariant Hierarchical Neural Network Architecture for Learning Atomic Potentials
5 March 2018
Risi Kondor
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"N-body Networks: a Covariant Hierarchical Neural Network Architecture for Learning Atomic Potentials"
35 / 35 papers shown
Title
EQ-VAE: Equivariance Regularized Latent Space for Improved Generative Image Modeling
Theodoros Kouzelis
Ioannis Kakogeorgiou
Spyros Gidaris
N. Komodakis
DRL
80
5
0
17 Feb 2025
Learning local equivariant representations for quantum operators
Zhanghao Zhouyin
Zixi Gan
MingKang Liu
S. K. Pandey
Linfeng Zhang
Qiangqiang Gu
93
3
0
28 Jan 2025
On the Fourier analysis in the SO(3) space : EquiLoPO Network
Dmitrii Zhemchuzhnikov
Sergei Grudinin
50
0
0
24 Apr 2024
Equivalence Between SE(3) Equivariant Networks via Steerable Kernels and Group Convolution
A. Poulenard
M. Ovsjanikov
Leonidas J. Guibas
3DPC
32
2
0
29 Nov 2022
Unifying O(3) Equivariant Neural Networks Design with Tensor-Network Formalism
Zimu Li
Zihan Pengmei
Han Zheng
Erik H. Thiede
Junyu Liu
Risi Kondor
29
2
0
14 Nov 2022
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields
Ilyes Batatia
D. P. Kovács
G. Simm
Christoph Ortner
Gábor Csányi
47
442
0
15 Jun 2022
Dimensionless machine learning: Imposing exact units equivariance
Soledad Villar
Weichi Yao
D. Hogg
Ben Blum-Smith
Bianca Dumitrascu
18
26
0
02 Apr 2022
Symmetry Group Equivariant Architectures for Physics
A. Bogatskiy
S. Ganguly
Thomas Kipf
Risi Kondor
David W. Miller
...
Jan T. Offermann
M. Pettee
P. Shanahan
C. Shimmin
S. Thais
AI4CE
27
27
0
11 Mar 2022
Deformation Robust Roto-Scale-Translation Equivariant CNNs
Liyao (Mars) Gao
Guang Lin
Wei-wei Zhu
25
8
0
22 Nov 2021
Scalars are universal: Equivariant machine learning, structured like classical physics
Soledad Villar
D. Hogg
Kate Storey-Fisher
Weichi Yao
Ben Blum-Smith
PINN
AI4CE
24
130
0
11 Jun 2021
DISCO: accurate Discrete Scale Convolutions
Ivan Sosnovik
A. Moskalev
A. Smeulders
26
31
0
04 Jun 2021
Protein sequence-to-structure learning: Is this the end(-to-end revolution)?
É. Laine
Stephan Eismann
A. Elofsson
Sergei Grudinin
OOD
3DV
23
34
0
16 May 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
233
1,240
0
08 Jan 2021
Data-driven rogue waves and parameter discovery in the defocusing NLS equation with a potential using the PINN deep learning
Li Wang
Zhenya Yan
19
80
0
18 Dec 2020
A Wigner-Eckart Theorem for Group Equivariant Convolution Kernels
Leon Lang
Maurice Weiler
35
53
0
21 Oct 2020
On the Universality of Rotation Equivariant Point Cloud Networks
Nadav Dym
Haggai Maron
3DPC
38
79
0
06 Oct 2020
SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
F. Fuchs
Daniel E. Worrall
Volker Fischer
Max Welling
3DPC
45
666
0
18 Jun 2020
Lorentz Group Equivariant Neural Network for Particle Physics
A. Bogatskiy
Brandon M. Anderson
Jan T. Offermann
M. Roussi
David W. Miller
Risi Kondor
AI4CE
29
136
0
08 Jun 2020
Isometric Transformation Invariant and Equivariant Graph Convolutional Networks
Masanobu Horie
Naoki Morita
Toshiaki Hishinuma
Yushi Ihara
Naoto Mitsume
GNN
8
23
0
13 May 2020
Theoretical Aspects of Group Equivariant Neural Networks
Carlos Esteves
27
41
0
10 Apr 2020
Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning
Marcel F. Langer
Alex Goessmann
M. Rupp
AI4CE
23
92
0
26 Mar 2020
On Learning Sets of Symmetric Elements
Haggai Maron
Or Litany
Gal Chechik
Ethan Fetaya
30
132
0
20 Feb 2020
Representation Learning on Unit Ball with 3D Roto-Translational Equivariance
Sameera Ramasinghe
Salman Khan
Nick Barnes
Stephen Gould
16
8
0
30 Nov 2019
Deep Learning for 2D and 3D Rotatable Data: An Overview of Methods
Luca Della Libera
Vladimir Golkov
Yue Zhu
Arman Mielke
Daniel Cremers
3DH
3DPC
25
4
0
31 Oct 2019
Cormorant: Covariant Molecular Neural Networks
Brandon M. Anderson
Truong-Son Hy
Risi Kondor
30
421
0
06 Jun 2019
Discrete Rotation Equivariance for Point Cloud Recognition
Jiaxin Li
Yingcai Bi
Gim Hee Lee
3DPC
27
24
0
31 Mar 2019
Deep Learning on Attributed Graphs: A Journey from Graphs to Their Embeddings and Back
M. Simonovsky
BDL
GNN
29
1
0
24 Jan 2019
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
165
308
0
05 Nov 2018
Graph Neural Networks for IceCube Signal Classification
Nicholas Choma
Federico Monti
Lisa Gerhardt
T. Palczewski
Z. Ronaghi
P. Prabhat
W. Bhimji
M. Bronstein
S. Klein
Joan Bruna
16
76
0
17 Sep 2018
3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data
Maurice Weiler
Mario Geiger
Max Welling
Wouter Boomsma
Taco S. Cohen
3DPC
45
494
0
06 Jul 2018
Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network
Risi Kondor
Zhen Lin
Shubhendu Trivedi
54
264
0
24 Jun 2018
Intertwiners between Induced Representations (with Applications to the Theory of Equivariant Neural Networks)
Taco S. Cohen
Mario Geiger
Maurice Weiler
41
46
0
28 Mar 2018
Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
Nathaniel Thomas
Tess E. Smidt
S. Kearnes
Lusann Yang
Li Li
Kai Kohlhoff
Patrick F. Riley
3DPC
44
942
0
22 Feb 2018
On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups
Risi Kondor
Shubhendu Trivedi
MLT
62
487
0
11 Feb 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
260
1,811
0
25 Nov 2016
1