ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.01442
  4. Cited By
Stochastic Activation Pruning for Robust Adversarial Defense

Stochastic Activation Pruning for Robust Adversarial Defense

5 March 2018
Guneet Singh Dhillon
Kamyar Azizzadenesheli
Zachary Chase Lipton
Jeremy Bernstein
Jean Kossaifi
Aran Khanna
Anima Anandkumar
    AAML
ArXivPDFHTML

Papers citing "Stochastic Activation Pruning for Robust Adversarial Defense"

28 / 128 papers shown
Title
Improving the Robustness of Deep Neural Networks via Adversarial
  Training with Triplet Loss
Improving the Robustness of Deep Neural Networks via Adversarial Training with Triplet Loss
Pengcheng Li
Jinfeng Yi
Bowen Zhou
Lijun Zhang
AAML
31
36
0
28 May 2019
Purifying Adversarial Perturbation with Adversarially Trained
  Auto-encoders
Purifying Adversarial Perturbation with Adversarially Trained Auto-encoders
Hebi Li
Qi Xiao
Shixin Tian
Jin Tian
AAML
24
4
0
26 May 2019
Enhancing Adversarial Defense by k-Winners-Take-All
Enhancing Adversarial Defense by k-Winners-Take-All
Chang Xiao
Peilin Zhong
Changxi Zheng
AAML
24
97
0
25 May 2019
Thwarting finite difference adversarial attacks with output
  randomization
Thwarting finite difference adversarial attacks with output randomization
Haidar Khan
Daniel Park
Azer Khan
B. Yener
SILM
AAML
33
0
0
23 May 2019
Adversarial Training for Free!
Adversarial Training for Free!
Ali Shafahi
Mahyar Najibi
Amin Ghiasi
Zheng Xu
John P. Dickerson
Christoph Studer
L. Davis
Gavin Taylor
Tom Goldstein
AAML
68
1,227
0
29 Apr 2019
Adversarial Defense Through Network Profiling Based Path Extraction
Adversarial Defense Through Network Profiling Based Path Extraction
Yuxian Qiu
Jingwen Leng
Cong Guo
Quan Chen
Chong Li
M. Guo
Yuhao Zhu
AAML
24
50
0
17 Apr 2019
Adversarial Defense by Restricting the Hidden Space of Deep Neural
  Networks
Adversarial Defense by Restricting the Hidden Space of Deep Neural Networks
Aamir Mustafa
Salman Khan
Munawar Hayat
Roland Göcke
Jianbing Shen
Ling Shao
AAML
17
151
0
01 Apr 2019
Defending against Whitebox Adversarial Attacks via Randomized
  Discretization
Defending against Whitebox Adversarial Attacks via Randomized Discretization
Yuchen Zhang
Percy Liang
AAML
32
75
0
25 Mar 2019
Variational Inference with Latent Space Quantization for Adversarial
  Resilience
Variational Inference with Latent Space Quantization for Adversarial Resilience
Vinay Kyatham
P. PrathoshA.
Tarun Kumar Yadav
Deepak Mishra
Dheeraj Mundhra
AAML
19
3
0
24 Mar 2019
A Kernelized Manifold Mapping to Diminish the Effect of Adversarial
  Perturbations
A Kernelized Manifold Mapping to Diminish the Effect of Adversarial Perturbations
Saeid Asgari Taghanaki
Kumar Abhishek
Shekoofeh Azizi
Ghassan Hamarneh
AAML
31
40
0
03 Mar 2019
Adversarial Attack and Defense on Point Sets
Adversarial Attack and Defense on Point Sets
Jiancheng Yang
Qiang Zhang
Rongyao Fang
Bingbing Ni
Jinxian Liu
Qi Tian
3DPC
24
122
0
28 Feb 2019
Disentangled Deep Autoencoding Regularization for Robust Image
  Classification
Disentangled Deep Autoencoding Regularization for Robust Image Classification
Zhenyu Duan
Martin Renqiang Min
Erran L. Li
Mingbo Cai
Yi Tian Xu
Bingbing Ni
13
2
0
27 Feb 2019
Daedalus: Breaking Non-Maximum Suppression in Object Detection via
  Adversarial Examples
Daedalus: Breaking Non-Maximum Suppression in Object Detection via Adversarial Examples
Derui Wang
Chaoran Li
S. Wen
Qing-Long Han
Surya Nepal
Xiangyu Zhang
Yang Xiang
AAML
30
40
0
06 Feb 2019
The Limitations of Adversarial Training and the Blind-Spot Attack
The Limitations of Adversarial Training and the Blind-Spot Attack
Huan Zhang
Hongge Chen
Zhao Song
Duane S. Boning
Inderjit S. Dhillon
Cho-Jui Hsieh
AAML
19
144
0
15 Jan 2019
QuSecNets: Quantization-based Defense Mechanism for Securing Deep Neural
  Network against Adversarial Attacks
QuSecNets: Quantization-based Defense Mechanism for Securing Deep Neural Network against Adversarial Attacks
Faiq Khalid
Hassan Ali
Hammad Tariq
Muhammad Abdullah Hanif
Semeen Rehman
Rehan Ahmed
Muhammad Shafique
AAML
MQ
35
37
0
04 Nov 2018
Sparse DNNs with Improved Adversarial Robustness
Sparse DNNs with Improved Adversarial Robustness
Yiwen Guo
Chao Zhang
Changshui Zhang
Yurong Chen
AAML
22
151
0
23 Oct 2018
DeepHunter: Hunting Deep Neural Network Defects via Coverage-Guided
  Fuzzing
DeepHunter: Hunting Deep Neural Network Defects via Coverage-Guided Fuzzing
Xiaofei Xie
Lei Ma
Felix Juefei Xu
Hongxu Chen
Minhui Xue
Bo-wen Li
Yang Liu
Jianjun Zhao
Jianxiong Yin
Simon See
43
40
0
04 Sep 2018
Motivating the Rules of the Game for Adversarial Example Research
Motivating the Rules of the Game for Adversarial Example Research
Justin Gilmer
Ryan P. Adams
Ian Goodfellow
David G. Andersen
George E. Dahl
AAML
50
226
0
18 Jul 2018
Monge blunts Bayes: Hardness Results for Adversarial Training
Monge blunts Bayes: Hardness Results for Adversarial Training
Zac Cranko
A. Menon
Richard Nock
Cheng Soon Ong
Zhan Shi
Christian J. Walder
AAML
26
16
0
08 Jun 2018
Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural
  Networks
Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks
Kang Liu
Brendan Dolan-Gavitt
S. Garg
AAML
24
1,021
0
30 May 2018
Towards the first adversarially robust neural network model on MNIST
Towards the first adversarially robust neural network model on MNIST
Lukas Schott
Jonas Rauber
Matthias Bethge
Wieland Brendel
AAML
OOD
14
369
0
23 May 2018
An ADMM-Based Universal Framework for Adversarial Attacks on Deep Neural
  Networks
An ADMM-Based Universal Framework for Adversarial Attacks on Deep Neural Networks
Pu Zhao
Sijia Liu
Yanzhi Wang
X. Lin
AAML
14
37
0
09 Apr 2018
Adversarial Defense based on Structure-to-Signal Autoencoders
Adversarial Defense based on Structure-to-Signal Autoencoders
Joachim Folz
Sebastián M. Palacio
Jörn Hees
Damian Borth
Andreas Dengel
AAML
26
32
0
21 Mar 2018
Defending against Adversarial Attack towards Deep Neural Networks via
  Collaborative Multi-task Training
Defending against Adversarial Attack towards Deep Neural Networks via Collaborative Multi-task Training
Derui Wang
Chaoran Li
S. Wen
Surya Nepal
Yang Xiang
AAML
41
29
0
14 Mar 2018
Deep Defense: Training DNNs with Improved Adversarial Robustness
Deep Defense: Training DNNs with Improved Adversarial Robustness
Ziang Yan
Yiwen Guo
Changshui Zhang
AAML
38
109
0
23 Feb 2018
Generative Adversarial Perturbations
Generative Adversarial Perturbations
Omid Poursaeed
Isay Katsman
Bicheng Gao
Serge J. Belongie
AAML
GAN
WIGM
31
351
0
06 Dec 2017
Towards Robust Neural Networks via Random Self-ensemble
Towards Robust Neural Networks via Random Self-ensemble
Xuanqing Liu
Minhao Cheng
Huan Zhang
Cho-Jui Hsieh
FedML
AAML
55
418
0
02 Dec 2017
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
308
5,842
0
08 Jul 2016
Previous
123