Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1803.01442
Cited By
Stochastic Activation Pruning for Robust Adversarial Defense
5 March 2018
Guneet Singh Dhillon
Kamyar Azizzadenesheli
Zachary Chase Lipton
Jeremy Bernstein
Jean Kossaifi
Aran Khanna
Anima Anandkumar
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Activation Pruning for Robust Adversarial Defense"
28 / 128 papers shown
Title
Improving the Robustness of Deep Neural Networks via Adversarial Training with Triplet Loss
Pengcheng Li
Jinfeng Yi
Bowen Zhou
Lijun Zhang
AAML
31
36
0
28 May 2019
Purifying Adversarial Perturbation with Adversarially Trained Auto-encoders
Hebi Li
Qi Xiao
Shixin Tian
Jin Tian
AAML
24
4
0
26 May 2019
Enhancing Adversarial Defense by k-Winners-Take-All
Chang Xiao
Peilin Zhong
Changxi Zheng
AAML
24
97
0
25 May 2019
Thwarting finite difference adversarial attacks with output randomization
Haidar Khan
Daniel Park
Azer Khan
B. Yener
SILM
AAML
33
0
0
23 May 2019
Adversarial Training for Free!
Ali Shafahi
Mahyar Najibi
Amin Ghiasi
Zheng Xu
John P. Dickerson
Christoph Studer
L. Davis
Gavin Taylor
Tom Goldstein
AAML
68
1,227
0
29 Apr 2019
Adversarial Defense Through Network Profiling Based Path Extraction
Yuxian Qiu
Jingwen Leng
Cong Guo
Quan Chen
Chong Li
M. Guo
Yuhao Zhu
AAML
24
50
0
17 Apr 2019
Adversarial Defense by Restricting the Hidden Space of Deep Neural Networks
Aamir Mustafa
Salman Khan
Munawar Hayat
Roland Göcke
Jianbing Shen
Ling Shao
AAML
17
151
0
01 Apr 2019
Defending against Whitebox Adversarial Attacks via Randomized Discretization
Yuchen Zhang
Percy Liang
AAML
32
75
0
25 Mar 2019
Variational Inference with Latent Space Quantization for Adversarial Resilience
Vinay Kyatham
P. PrathoshA.
Tarun Kumar Yadav
Deepak Mishra
Dheeraj Mundhra
AAML
19
3
0
24 Mar 2019
A Kernelized Manifold Mapping to Diminish the Effect of Adversarial Perturbations
Saeid Asgari Taghanaki
Kumar Abhishek
Shekoofeh Azizi
Ghassan Hamarneh
AAML
31
40
0
03 Mar 2019
Adversarial Attack and Defense on Point Sets
Jiancheng Yang
Qiang Zhang
Rongyao Fang
Bingbing Ni
Jinxian Liu
Qi Tian
3DPC
24
122
0
28 Feb 2019
Disentangled Deep Autoencoding Regularization for Robust Image Classification
Zhenyu Duan
Martin Renqiang Min
Erran L. Li
Mingbo Cai
Yi Tian Xu
Bingbing Ni
13
2
0
27 Feb 2019
Daedalus: Breaking Non-Maximum Suppression in Object Detection via Adversarial Examples
Derui Wang
Chaoran Li
S. Wen
Qing-Long Han
Surya Nepal
Xiangyu Zhang
Yang Xiang
AAML
30
40
0
06 Feb 2019
The Limitations of Adversarial Training and the Blind-Spot Attack
Huan Zhang
Hongge Chen
Zhao Song
Duane S. Boning
Inderjit S. Dhillon
Cho-Jui Hsieh
AAML
19
144
0
15 Jan 2019
QuSecNets: Quantization-based Defense Mechanism for Securing Deep Neural Network against Adversarial Attacks
Faiq Khalid
Hassan Ali
Hammad Tariq
Muhammad Abdullah Hanif
Semeen Rehman
Rehan Ahmed
Muhammad Shafique
AAML
MQ
35
37
0
04 Nov 2018
Sparse DNNs with Improved Adversarial Robustness
Yiwen Guo
Chao Zhang
Changshui Zhang
Yurong Chen
AAML
22
151
0
23 Oct 2018
DeepHunter: Hunting Deep Neural Network Defects via Coverage-Guided Fuzzing
Xiaofei Xie
Lei Ma
Felix Juefei Xu
Hongxu Chen
Minhui Xue
Bo-wen Li
Yang Liu
Jianjun Zhao
Jianxiong Yin
Simon See
43
40
0
04 Sep 2018
Motivating the Rules of the Game for Adversarial Example Research
Justin Gilmer
Ryan P. Adams
Ian Goodfellow
David G. Andersen
George E. Dahl
AAML
50
226
0
18 Jul 2018
Monge blunts Bayes: Hardness Results for Adversarial Training
Zac Cranko
A. Menon
Richard Nock
Cheng Soon Ong
Zhan Shi
Christian J. Walder
AAML
26
16
0
08 Jun 2018
Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks
Kang Liu
Brendan Dolan-Gavitt
S. Garg
AAML
24
1,021
0
30 May 2018
Towards the first adversarially robust neural network model on MNIST
Lukas Schott
Jonas Rauber
Matthias Bethge
Wieland Brendel
AAML
OOD
14
369
0
23 May 2018
An ADMM-Based Universal Framework for Adversarial Attacks on Deep Neural Networks
Pu Zhao
Sijia Liu
Yanzhi Wang
X. Lin
AAML
14
37
0
09 Apr 2018
Adversarial Defense based on Structure-to-Signal Autoencoders
Joachim Folz
Sebastián M. Palacio
Jörn Hees
Damian Borth
Andreas Dengel
AAML
26
32
0
21 Mar 2018
Defending against Adversarial Attack towards Deep Neural Networks via Collaborative Multi-task Training
Derui Wang
Chaoran Li
S. Wen
Surya Nepal
Yang Xiang
AAML
41
29
0
14 Mar 2018
Deep Defense: Training DNNs with Improved Adversarial Robustness
Ziang Yan
Yiwen Guo
Changshui Zhang
AAML
38
109
0
23 Feb 2018
Generative Adversarial Perturbations
Omid Poursaeed
Isay Katsman
Bicheng Gao
Serge J. Belongie
AAML
GAN
WIGM
31
351
0
06 Dec 2017
Towards Robust Neural Networks via Random Self-ensemble
Xuanqing Liu
Minhao Cheng
Huan Zhang
Cho-Jui Hsieh
FedML
AAML
55
418
0
02 Dec 2017
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
308
5,842
0
08 Jul 2016
Previous
1
2
3