ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.10501
  4. Cited By
Predictive Uncertainty Estimation via Prior Networks

Predictive Uncertainty Estimation via Prior Networks

28 February 2018
A. Malinin
Mark Gales
    UD
    BDL
    EDL
    UQCV
    PER
ArXivPDFHTML

Papers citing "Predictive Uncertainty Estimation via Prior Networks"

50 / 202 papers shown
Title
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
  Selection Framework for Semi-Supervised Learning
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning
Mamshad Nayeem Rizve
Kevin Duarte
Yogesh S Rawat
M. Shah
247
510
0
15 Jan 2021
Multidimensional Uncertainty-Aware Evidential Neural Networks
Multidimensional Uncertainty-Aware Evidential Neural Networks
Yibo Hu
Yuzhe Ou
Xujiang Zhao
Jin-Hee Cho
Feng Chen
EDL
UQCV
AAML
33
23
0
26 Dec 2020
Learning Prediction Intervals for Model Performance
Learning Prediction Intervals for Model Performance
Benjamin Elder
Matthew Arnold
Anupama Murthi
Jirí Navrátil
27
11
0
15 Dec 2020
Know Your Limits: Uncertainty Estimation with ReLU Classifiers Fails at
  Reliable OOD Detection
Know Your Limits: Uncertainty Estimation with ReLU Classifiers Fails at Reliable OOD Detection
Dennis Ulmer
Giovanni Cina
OODD
35
31
0
09 Dec 2020
The Hidden Uncertainty in a Neural Networks Activations
The Hidden Uncertainty in a Neural Networks Activations
Janis Postels
Hermann Blum
Yannick Strümpler
Cesar Cadena
Roland Siegwart
Luc Van Gool
Federico Tombari
UQCV
36
22
0
05 Dec 2020
A Review and Comparative Study on Probabilistic Object Detection in
  Autonomous Driving
A Review and Comparative Study on Probabilistic Object Detection in Autonomous Driving
Di Feng
Ali Harakeh
Steven Waslander
Klaus C. J. Dietmayer
AAML
UQCV
EDL
24
224
0
20 Nov 2020
DS-UI: Dual-Supervised Mixture of Gaussian Mixture Models for
  Uncertainty Inference
DS-UI: Dual-Supervised Mixture of Gaussian Mixture Models for Uncertainty Inference
Jiyang Xie
Zhanyu Ma
Jing-Hao Xue
Guoqiang Zhang
Jun Guo
BDL
27
11
0
17 Nov 2020
Evaluating Robustness of Predictive Uncertainty Estimation: Are
  Dirichlet-based Models Reliable?
Evaluating Robustness of Predictive Uncertainty Estimation: Are Dirichlet-based Models Reliable?
Anna-Kathrin Kopetzki
Bertrand Charpentier
Daniel Zügner
Sandhya Giri
Stephan Günnemann
23
45
0
28 Oct 2020
Uncertainty Aware Semi-Supervised Learning on Graph Data
Uncertainty Aware Semi-Supervised Learning on Graph Data
Xujiang Zhao
Feng Chen
Shu Hu
Jin-Hee Cho
UQCV
EDL
BDL
121
131
0
24 Oct 2020
Energy-based Out-of-distribution Detection
Energy-based Out-of-distribution Detection
Weitang Liu
Xiaoyun Wang
John Douglas Owens
Yixuan Li
OODD
110
1,306
0
08 Oct 2020
On Generating Plausible Counterfactual and Semi-Factual Explanations for
  Deep Learning
On Generating Plausible Counterfactual and Semi-Factual Explanations for Deep Learning
Eoin M. Kenny
Mark T. Keane
28
99
0
10 Sep 2020
Ramifications of Approximate Posterior Inference for Bayesian Deep
  Learning in Adversarial and Out-of-Distribution Settings
Ramifications of Approximate Posterior Inference for Bayesian Deep Learning in Adversarial and Out-of-Distribution Settings
John Mitros
A. Pakrashi
Brian Mac Namee
UQCV
26
2
0
03 Sep 2020
Using Subjective Logic to Estimate Uncertainty in Multi-Armed Bandit
  Problems
Using Subjective Logic to Estimate Uncertainty in Multi-Armed Bandit Problems
Fabio Massimo Zennaro
A. Jøsang
19
4
0
17 Aug 2020
Prediction Intervals: Split Normal Mixture from Quality-Driven Deep
  Ensembles
Prediction Intervals: Split Normal Mixture from Quality-Driven Deep Ensembles
Tárik S. Salem
H. Langseth
H. Ramampiaro
UQCV
29
36
0
19 Jul 2020
Contrastive Training for Improved Out-of-Distribution Detection
Contrastive Training for Improved Out-of-Distribution Detection
Jim Winkens
Rudy Bunel
Abhijit Guha Roy
Robert Stanforth
Vivek Natarajan
...
Alan Karthikesalingam
Simon A. A. Kohl
taylan. cemgil
S. M. Ali Eslami
Olaf Ronneberger
OODD
19
236
0
10 Jul 2020
Quantifying and Leveraging Predictive Uncertainty for Medical Image
  Assessment
Quantifying and Leveraging Predictive Uncertainty for Medical Image Assessment
Florin-Cristian Ghesu
Bogdan Georgescu
Awais Mansoor
Y. Yoo
Eli Gibson
...
Ramandeep Singh
S. Digumarthy
M. Kalra
Sasa Grbic
Dorin Comaniciu
UQCV
EDL
23
55
0
08 Jul 2020
Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
  Higher-Order Influence Functions
Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions
Ahmed Alaa
M. Schaar
UD
UQCV
BDL
TDI
26
53
0
29 Jun 2020
Unlabelled Data Improves Bayesian Uncertainty Calibration under
  Covariate Shift
Unlabelled Data Improves Bayesian Uncertainty Calibration under Covariate Shift
Alex J. Chan
Ahmed Alaa
Zhaozhi Qian
M. Schaar
UQCV
BDL
OOD
28
38
0
26 Jun 2020
Towards Better Performance and More Explainable Uncertainty for 3D
  Object Detection of Autonomous Vehicles
Towards Better Performance and More Explainable Uncertainty for 3D Object Detection of Autonomous Vehicles
Hujie Pan
Zining Wang
Wei Zhan
Masayoshi Tomizuka
UQCV
3DPC
28
27
0
22 Jun 2020
Frequentist Uncertainty in Recurrent Neural Networks via Blockwise
  Influence Functions
Frequentist Uncertainty in Recurrent Neural Networks via Blockwise Influence Functions
Ahmed Alaa
M. Schaar
UQCV
BDL
14
22
0
20 Jun 2020
Simple and Principled Uncertainty Estimation with Deterministic Deep
  Learning via Distance Awareness
Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness
Jeremiah Zhe Liu
Zi Lin
Shreyas Padhy
Dustin Tran
Tania Bedrax-Weiss
Balaji Lakshminarayanan
UQCV
BDL
37
437
0
17 Jun 2020
Learning Visual Commonsense for Robust Scene Graph Generation
Learning Visual Commonsense for Robust Scene Graph Generation
Alireza Zareian
Zhecan Wang
Haoxuan You
Shih-Fu Chang
27
312
0
17 Jun 2020
Posterior Network: Uncertainty Estimation without OOD Samples via
  Density-Based Pseudo-Counts
Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts
Bertrand Charpentier
Daniel Zügner
Stephan Günnemann
UQCV
UD
EDL
BDL
32
169
0
16 Jun 2020
Calibrating Deep Neural Network Classifiers on Out-of-Distribution
  Datasets
Calibrating Deep Neural Network Classifiers on Out-of-Distribution Datasets
Zhihui Shao
Jianyi Yang
Shaolei Ren
OODD
35
11
0
16 Jun 2020
Uncertainty-Aware Deep Classifiers using Generative Models
Uncertainty-Aware Deep Classifiers using Generative Models
Murat Sensoy
Lance M. Kaplan
Federico Cerutti
Maryam Saleki
UQCV
OOD
28
73
0
07 Jun 2020
Universal Source-Free Domain Adaptation
Universal Source-Free Domain Adaptation
Jogendra Nath Kundu
Naveen Venkat
V. RahulM.
R. Venkatesh Babu
VLM
TTA
9
338
0
09 Apr 2020
Calibrating Structured Output Predictors for Natural Language Processing
Calibrating Structured Output Predictors for Natural Language Processing
Abhyuday N. Jagannatha
Hong-ye Yu
22
28
0
09 Apr 2020
Fast Predictive Uncertainty for Classification with Bayesian Deep
  Networks
Fast Predictive Uncertainty for Classification with Bayesian Deep Networks
Marius Hobbhahn
Agustinus Kristiadi
Philipp Hennig
BDL
UQCV
78
32
0
02 Mar 2020
Generalized ODIN: Detecting Out-of-distribution Image without Learning
  from Out-of-distribution Data
Generalized ODIN: Detecting Out-of-distribution Image without Learning from Out-of-distribution Data
Yen-Chang Hsu
Yilin Shen
Hongxia Jin
Z. Kira
OODD
24
561
0
26 Feb 2020
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
35
277
0
24 Feb 2020
Being Bayesian about Categorical Probability
Being Bayesian about Categorical Probability
Taejong Joo
U. Chung
Minji Seo
UQCV
BDL
30
58
0
19 Feb 2020
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep
  Learning
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning
Arsenii Ashukha
Alexander Lyzhov
Dmitry Molchanov
Dmitry Vetrov
UQCV
FedML
38
314
0
15 Feb 2020
Dirichlet uncertainty wrappers for actionable algorithm accuracy
  accountability and auditability
Dirichlet uncertainty wrappers for actionable algorithm accuracy accountability and auditability
José Mena
O. Pujol
Jordi Vitrià
21
8
0
29 Dec 2019
Accurate Uncertainty Estimation and Decomposition in Ensemble Learning
Accurate Uncertainty Estimation and Decomposition in Ensemble Learning
J. Liu
John Paisley
M. Kioumourtzoglou
B. Coull
UQCV
UD
PER
30
83
0
11 Nov 2019
Learning an Uncertainty-Aware Object Detector for Autonomous Driving
Learning an Uncertainty-Aware Object Detector for Autonomous Driving
Gregory P. Meyer
Niranjan Thakurdesai
UQCV
25
60
0
24 Oct 2019
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction
  to Concepts and Methods
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods
Eyke Hüllermeier
Willem Waegeman
PER
UD
87
1,359
0
21 Oct 2019
Generating Data using Monte Carlo Dropout
Generating Data using Monte Carlo Dropout
Kristian Miok
Dong Nguyen Doan
D. Zaharie
Marko Robnik-Šikonja
SyDa
27
13
0
12 Sep 2019
Out-of-domain Detection for Natural Language Understanding in Dialog
  Systems
Out-of-domain Detection for Natural Language Understanding in Dialog Systems
Yinhe Zheng
Guanyi Chen
Minlie Huang
28
121
0
09 Sep 2019
Density estimation in representation space to predict model uncertainty
Density estimation in representation space to predict model uncertainty
Tiago Ramalho
M. Corbalan
UQCV
BDL
16
38
0
20 Aug 2019
U-CAM: Visual Explanation using Uncertainty based Class Activation Maps
U-CAM: Visual Explanation using Uncertainty based Class Activation Maps
Badri N. Patro
Mayank Lunayach
Shivansh Patel
Vinay P. Namboodiri
FAtt
UQCV
27
76
0
17 Aug 2019
Entropic Out-of-Distribution Detection
Entropic Out-of-Distribution Detection
David Macêdo
T. I. Ren
Cleber Zanchettin
Adriano Oliveira
Teresa B Ludermir
OODD
UQCV
25
32
0
15 Aug 2019
Improved Adversarial Robustness by Reducing Open Space Risk via Tent
  Activations
Improved Adversarial Robustness by Reducing Open Space Risk via Tent Activations
Andras Rozsa
Terrance E. Boult
AAML
30
18
0
07 Aug 2019
Probabilistic Residual Learning for Aleatoric Uncertainty in Image Restoration
Chen Zhang
Bangti Jin
UQCV
24
12
0
01 Aug 2019
Analyzing the Role of Model Uncertainty for Electronic Health Records
Analyzing the Role of Model Uncertainty for Electronic Health Records
Michael W. Dusenberry
Dustin Tran
Edward Choi
Jonas Kemp
Jeremy Nixon
Ghassen Jerfel
Katherine A. Heller
Andrew M. Dai
18
117
0
10 Jun 2019
Modeling Uncertainty by Learning a Hierarchy of Deep Neural Connections
Modeling Uncertainty by Learning a Hierarchy of Deep Neural Connections
R. Y. Rohekar
Yaniv Gurwicz
Shami Nisimov
Gal Novik
BDL
UQCV
26
13
0
30 May 2019
Efficient Neural Architecture Search via Proximal Iterations
Efficient Neural Architecture Search via Proximal Iterations
Quanming Yao
Ju Xu
Wei-Wei Tu
Zhanxing Zhu
27
104
0
30 May 2019
Training Data Subset Search with Ensemble Active Learning
Training Data Subset Search with Ensemble Active Learning
Kashyap Chitta
J. Álvarez
Elmar Haussmann
C. Farabet
25
13
0
29 May 2019
Ensemble Distribution Distillation
Ensemble Distribution Distillation
A. Malinin
Bruno Mlodozeniec
Mark Gales
UQCV
27
232
0
30 Apr 2019
Deep Anomaly Detection with Outlier Exposure
Deep Anomaly Detection with Outlier Exposure
Dan Hendrycks
Mantas Mazeika
Thomas G. Dietterich
OODD
31
1,457
0
11 Dec 2018
Variance Networks: When Expectation Does Not Meet Your Expectations
Variance Networks: When Expectation Does Not Meet Your Expectations
Kirill Neklyudov
Dmitry Molchanov
Arsenii Ashukha
Dmitry Vetrov
UQCV
20
23
0
10 Mar 2018
Previous
12345
Next