Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.08908
Cited By
Scalable Private Learning with PATE
24 February 2018
Nicolas Papernot
Shuang Song
Ilya Mironov
A. Raghunathan
Kunal Talwar
Ulfar Erlingsson
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Scalable Private Learning with PATE"
50 / 153 papers shown
Title
Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for Private Learning
Da Yu
Huishuai Zhang
Wei Chen
Tie-Yan Liu
FedML
SILM
94
111
0
25 Feb 2021
PRICURE: Privacy-Preserving Collaborative Inference in a Multi-Party Setting
Ismat Jarin
Birhanu Eshete
26
18
0
19 Feb 2021
Deep Learning with Label Differential Privacy
Badih Ghazi
Noah Golowich
Ravi Kumar
Pasin Manurangsi
Chiyuan Zhang
42
146
0
11 Feb 2021
CaPC Learning: Confidential and Private Collaborative Learning
Christopher A. Choquette-Choo
Natalie Dullerud
Adam Dziedzic
Yunxiang Zhang
S. Jha
Nicolas Papernot
Xiao Wang
FedML
73
57
0
09 Feb 2021
Quantifying and Mitigating Privacy Risks of Contrastive Learning
Xinlei He
Yang Zhang
21
51
0
08 Feb 2021
Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning
Milad Nasr
Shuang Song
Abhradeep Thakurta
Nicolas Papernot
Nicholas Carlini
MIACV
FedML
82
216
0
11 Jan 2021
Kamino: Constraint-Aware Differentially Private Data Synthesis
Chang Ge
Shubhankar Mohapatra
Xi He
Ihab F. Ilyas
SyDa
23
44
0
31 Dec 2020
Neighbors From Hell: Voltage Attacks Against Deep Learning Accelerators on Multi-Tenant FPGAs
Andrew Boutros
Mathew Hall
Nicolas Papernot
Vaughn Betz
19
38
0
14 Dec 2020
Synthetic Data: Opening the data floodgates to enable faster, more directed development of machine learning methods
James Jordon
A. Wilson
M. Schaar
AI4CE
87
16
0
08 Dec 2020
Privacy and Robustness in Federated Learning: Attacks and Defenses
Lingjuan Lyu
Han Yu
Xingjun Ma
Chen Chen
Lichao Sun
Jun Zhao
Qiang Yang
Philip S. Yu
FedML
183
355
0
07 Dec 2020
Free Gap Estimates from the Exponential Mechanism, Sparse Vector, Noisy Max and Related Algorithms
Zeyu Ding
Yuxin Wang
Yingtai Xiao
Guanhong Wang
Danfeng Zhang
Daniel Kifer
31
6
0
02 Dec 2020
On the Privacy Risks of Algorithmic Fairness
Hong Chang
Reza Shokri
FaML
33
109
0
07 Nov 2020
Practical One-Shot Federated Learning for Cross-Silo Setting
Qinbin Li
Bingsheng He
D. Song
FedML
18
114
0
02 Oct 2020
Distillation-Based Semi-Supervised Federated Learning for Communication-Efficient Collaborative Training with Non-IID Private Data
Sohei Itahara
Takayuki Nishio
Yusuke Koda
M. Morikura
Koji Yamamoto
FedML
25
251
0
14 Aug 2020
More Than Privacy: Applying Differential Privacy in Key Areas of Artificial Intelligence
Tianqing Zhu
Dayong Ye
Wei Wang
Wanlei Zhou
Philip S. Yu
SyDa
38
125
0
05 Aug 2020
Anonymizing Machine Learning Models
Abigail Goldsteen
Gilad Ezov
Ron Shmelkin
Micha Moffie
Ariel Farkash
MIACV
16
5
0
26 Jul 2020
Private Post-GAN Boosting
Marcel Neunhoeffer
Zhiwei Steven Wu
Cynthia Dwork
122
29
0
23 Jul 2020
Probabilistic Jacobian-based Saliency Maps Attacks
Théo Combey
António Loison
Maxime Faucher
H. Hajri
AAML
21
19
0
12 Jul 2020
The Trade-Offs of Private Prediction
L. V. D. van der Maaten
Awni Y. Hannun
25
22
0
09 Jul 2020
Reducing Risk of Model Inversion Using Privacy-Guided Training
Abigail Goldsteen
Gilad Ezov
Ariel Farkash
24
4
0
29 Jun 2020
SPEED: Secure, PrivatE, and Efficient Deep learning
Arnaud Grivet Sébert
Rafael Pinot
Martin Zuber
Cédric Gouy-Pailler
Renaud Sirdey
FedML
15
20
0
16 Jun 2020
Privacy Adversarial Network: Representation Learning for Mobile Data Privacy
Sicong Liu
Junzhao Du
Anshumali Shrivastava
Lin Zhong
48
14
0
08 Jun 2020
Synthetic Observational Health Data with GANs: from slow adoption to a boom in medical research and ultimately digital twins?
Jeremy Georges-Filteau
Elisa Cirillo
SyDa
AI4CE
36
17
0
27 May 2020
An Overview of Privacy in Machine Learning
Emiliano De Cristofaro
SILM
30
83
0
18 May 2020
Private Stochastic Convex Optimization: Optimal Rates in Linear Time
Vitaly Feldman
Tomer Koren
Kunal Talwar
13
203
0
10 May 2020
When Machine Unlearning Jeopardizes Privacy
Min Chen
Zhikun Zhang
Tianhao Wang
Michael Backes
Mathias Humbert
Yang Zhang
MIACV
31
218
0
05 May 2020
A Review of Privacy-preserving Federated Learning for the Internet-of-Things
Christopher Briggs
Zhong Fan
Péter András
28
15
0
24 Apr 2020
Private Query Release Assisted by Public Data
Raef Bassily
Albert Cheu
Shay Moran
Aleksandar Nikolov
Jonathan R. Ullman
Zhiwei Steven Wu
76
47
0
23 Apr 2020
Differentially Private Deep Learning with Smooth Sensitivity
Lichao Sun
Yingbo Zhou
Philip S. Yu
Caiming Xiong
FedML
21
9
0
01 Mar 2020
Understanding and Improving Knowledge Distillation
Jiaxi Tang
Rakesh Shivanna
Zhe Zhao
Dong Lin
Anima Singh
Ed H. Chi
Sagar Jain
27
129
0
10 Feb 2020
Radioactive data: tracing through training
Alexandre Sablayrolles
Matthijs Douze
Cordelia Schmid
Hervé Jégou
38
74
0
03 Feb 2020
An Adaptive and Fast Convergent Approach to Differentially Private Deep Learning
Zhiying Xu
Shuyu Shi
A. Liu
Jun Zhao
Lin Chen
FedML
29
36
0
19 Dec 2019
Private Federated Learning with Domain Adaptation
Daniel W. Peterson
Pallika H. Kanani
Virendra J. Marathe
FedML
21
81
0
13 Dec 2019
HybridAlpha: An Efficient Approach for Privacy-Preserving Federated Learning
Runhua Xu
Nathalie Baracaldo
Yi Zhou
Ali Anwar
Heiko Ludwig
FedML
21
287
0
12 Dec 2019
Federated Learning with Bayesian Differential Privacy
Aleksei Triastcyn
Boi Faltings
FedML
19
174
0
22 Nov 2019
DP-LSSGD: A Stochastic Optimization Method to Lift the Utility in Privacy-Preserving ERM
Bao Wang
Quanquan Gu
M. Boedihardjo
Farzin Barekat
Stanley J. Osher
16
25
0
28 Jun 2019
G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators
Yunhui Long
Wei Ping
Zhuolin Yang
B. Kailkhura
Aston Zhang
C.A. Gunter
Bo-wen Li
22
72
0
21 Jun 2019
Average-Case Averages: Private Algorithms for Smooth Sensitivity and Mean Estimation
Mark Bun
Thomas Steinke
47
74
0
06 Jun 2019
Differentially Private Learning with Adaptive Clipping
Galen Andrew
Om Thakkar
H. B. McMahan
Swaroop Ramaswamy
FedML
30
331
0
09 May 2019
A Hybrid Approach to Privacy-Preserving Federated Learning
Stacey Truex
Nathalie Baracaldo
Ali Anwar
Thomas Steinke
Heiko Ludwig
Rui Zhang
Yi Zhou
FedML
22
884
0
07 Dec 2018
Differentially Private Data Generative Models
Qingrong Chen
Chong Xiang
Minhui Xue
Bo-wen Li
Nikita Borisov
Dali Kaafar
Haojin Zhu
SyDa
AAML
15
79
0
06 Dec 2018
Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning
Milad Nasr
Reza Shokri
Amir Houmansadr
FedML
MIACV
AAML
13
244
0
03 Dec 2018
An overview of deep learning in medical imaging focusing on MRI
A. Lundervold
A. Lundervold
OOD
22
1,608
0
25 Nov 2018
Faster CryptoNets: Leveraging Sparsity for Real-World Encrypted Inference
Edward Chou
Josh Beal
Daniel Levy
Serena Yeung
Albert Haque
Li Fei-Fei
32
198
0
25 Nov 2018
A Fully Private Pipeline for Deep Learning on Electronic Health Records
Edward Chou
Thao Nguyen
Josh Beal
Albert Haque
Li Fei-Fei
SyDa
FedML
16
6
0
25 Nov 2018
Private Model Compression via Knowledge Distillation
Ji Wang
Weidong Bao
Lichao Sun
Xiaomin Zhu
Bokai Cao
Philip S. Yu
FedML
6
116
0
13 Nov 2018
Private Machine Learning in TensorFlow using Secure Computation
Morten Dahl
Jason V. Mancuso
Yann Dupis
Ben Decoste
Morgan Giraud
Ian Livingstone
Justin Patriquin
Gavin Uhma
FedML
18
75
0
18 Oct 2018
Privacy Amplification by Iteration
Vitaly Feldman
Ilya Mironov
Kunal Talwar
Abhradeep Thakurta
FedML
23
170
0
20 Aug 2018
Differentially-Private "Draw and Discard" Machine Learning
Vasyl Pihur
Aleksandra Korolova
Frederick Liu
Subhash Sankuratripati
M. Yung
Dachuan Huang
Ruogu Zeng
FedML
33
39
0
11 Jul 2018
Exploiting Unintended Feature Leakage in Collaborative Learning
Luca Melis
Congzheng Song
Emiliano De Cristofaro
Vitaly Shmatikov
FedML
81
1,455
0
10 May 2018
Previous
1
2
3
4
Next