ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.08786
  4. Cited By
Syntax-Directed Variational Autoencoder for Structured Data

Syntax-Directed Variational Autoencoder for Structured Data

24 February 2018
H. Dai
Yingtao Tian
Bo Dai
Steven Skiena
Le Song
ArXivPDFHTML

Papers citing "Syntax-Directed Variational Autoencoder for Structured Data"

21 / 71 papers shown
Title
Generating Sentences from Disentangled Syntactic and Semantic Spaces
Generating Sentences from Disentangled Syntactic and Semantic Spaces
Yu Bao
Hao Zhou
Shujian Huang
Lei Li
Lili Mou
Olga Vechtomova
Xinyu Dai
Jiajun Chen
DRL
21
107
0
06 Jul 2019
Mixed-Variable Bayesian Optimization
Mixed-Variable Bayesian Optimization
Erik A. Daxberger
Anastasia Makarova
M. Turchetta
Andreas Krause
24
51
0
02 Jul 2019
A Two-Step Graph Convolutional Decoder for Molecule Generation
A Two-Step Graph Convolutional Decoder for Molecule Generation
Xavier Bresson
T. Laurent
19
60
0
08 Jun 2019
Symmetry-adapted generation of 3d point sets for the targeted discovery
  of molecules
Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules
Niklas W. A. Gebauer
M. Gastegger
Kristof T. Schütt
35
201
0
02 Jun 2019
Self-Referencing Embedded Strings (SELFIES): A 100% robust molecular
  string representation
Self-Referencing Embedded Strings (SELFIES): A 100% robust molecular string representation
Mario Krenn
Florian Hase
AkshatKumar Nigam
Pascal Friederich
Alán Aspuru-Guzik
13
70
0
31 May 2019
Prototype Propagation Networks (PPN) for Weakly-supervised Few-shot
  Learning on Category Graph
Prototype Propagation Networks (PPN) for Weakly-supervised Few-shot Learning on Category Graph
Lu Liu
Dinesh Manocha
Guodong Long
Jing Jiang
Lina Yao
Chengqi Zhang
24
71
0
10 May 2019
D-VAE: A Variational Autoencoder for Directed Acyclic Graphs
D-VAE: A Variational Autoencoder for Directed Acyclic Graphs
Muhan Zhang
Shali Jiang
Zhicheng Cui
Roman Garnett
Yixin Chen
GNN
BDL
CML
32
196
0
24 Apr 2019
Deep Learning on Attributed Graphs: A Journey from Graphs to Their
  Embeddings and Back
Deep Learning on Attributed Graphs: A Journey from Graphs to Their Embeddings and Back
M. Simonovsky
BDL
GNN
29
1
0
24 Jan 2019
A Comprehensive Survey on Graph Neural Networks
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaML
GNN
AI4TS
AI4CE
161
8,362
0
03 Jan 2019
Learning Multimodal Graph-to-Graph Translation for Molecular
  Optimization
Learning Multimodal Graph-to-Graph Translation for Molecular Optimization
Wengong Jin
Kevin Kaichuang Yang
Regina Barzilay
Tommi Jaakkola
33
224
0
03 Dec 2018
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation
  Models
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Daniil Polykovskiy
Alexander Zhebrak
Benjamín Sánchez-Lengeling
Sergey Golovanov
Oktai Tatanov
...
Simon Johansson
Hongming Chen
Sergey I. Nikolenko
Alán Aspuru-Guzik
Alex Zhavoronkov
ELM
197
633
0
29 Nov 2018
GuacaMol: Benchmarking Models for De Novo Molecular Design
GuacaMol: Benchmarking Models for De Novo Molecular Design
Nathan Brown
Marco Fiscato
Marwin H. S. Segler
Alain C. Vaucher
ELM
44
692
0
22 Nov 2018
Concept-Oriented Deep Learning: Generative Concept Representations
Concept-Oriented Deep Learning: Generative Concept Representations
Daniel T. Chang
DRL
GAN
BDL
34
12
0
15 Nov 2018
Generating equilibrium molecules with deep neural networks
Generating equilibrium molecules with deep neural networks
Niklas W. A. Gebauer
M. Gastegger
Kristof T. Schütt
BDL
19
38
0
26 Oct 2018
Efficiently measuring a quantum device using machine learning
Efficiently measuring a quantum device using machine learning
D. Lennon
H. Moon
L. Camenzind
Liuqi Yu
D. Zumbuhl
G. Briggs
Michael A. Osborne
E. Laird
N. Ares
14
67
0
23 Oct 2018
Optimization of Molecules via Deep Reinforcement Learning
Optimization of Molecules via Deep Reinforcement Learning
Zhenpeng Zhou
S. Kearnes
Li Li
R. Zare
Patrick F. Riley
AI4CE
27
532
0
19 Oct 2018
Latent Molecular Optimization for Targeted Therapeutic Design
Latent Molecular Optimization for Targeted Therapeutic Design
Tristan Aumentado-Armstrong
15
41
0
05 Sep 2018
Graph Convolutional Policy Network for Goal-Directed Molecular Graph
  Generation
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
J. Leskovec
GNN
206
885
0
07 Jun 2018
Conditional molecular design with deep generative models
Conditional molecular design with deep generative models
Seokho Kang
Kyunghyun Cho
BDL
175
183
0
30 Apr 2018
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models
Jiaxuan You
Rex Ying
Xiang Ren
William L. Hamilton
J. Leskovec
GNN
BDL
43
831
0
24 Feb 2018
Constrained Bayesian Optimization for Automatic Chemical Design
Constrained Bayesian Optimization for Automatic Chemical Design
Ryan-Rhys Griffiths
José Miguel Hernández-Lobato
BDL
39
76
0
16 Sep 2017
Previous
12