ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.08687
67
31

Learning a Continuous Representation of 3D Molecular Structures with Deep Generative Models

17 October 2020
Matthew Ragoza
Tomohide Masuda
D. Koes
    DiffM
    MedIm
ArXivPDFHTML
Abstract

Machine learning in drug discovery has been focused on virtual screening of molecular libraries using discriminative models. Generative models are an entirely different approach that learn to represent and optimize molecules in a continuous latent space. These methods have been increasingly successful at generating two dimensional molecules as SMILES strings and molecular graphs. In this work, we describe deep generative models of three dimensional molecular structures using atomic density grids and a novel fitting algorithm for converting continuous grids to discrete molecular structures. Our models jointly represent drug-like molecules and their conformations in a latent space that can be explored through interpolation. We are also able to sample diverse sets of molecules based on a given input compound and increase the probability of creating valid, drug-like molecules.

View on arXiv
Comments on this paper